JavaScript算法和数据结构

用JavaScript实现的算法和数据结构,带有解释和进一步阅读的链接。「Algorithms and data structures implemented in JavaScript with explanations and links to further readings」

Github星跟踪图

JavaScript Algorithms and Data Structures

Build Status
codecov

This repository contains JavaScript based examples of many
popular algorithms and data structures.

Each algorithm and data structure has its own separate README
with related explanations and links for further reading (including ones
to YouTube videos).

Read this in other languages:
简体中文,
繁體中文,
한국어,
日本語,
Polski,
Français,
Español,
Português

☝ Note that this project is meant to be used for learning and researching purposes
only and it is not meant to be used for production.

Data Structures

A data structure is a particular way of organizing and storing data in a computer so that it can
be accessed and modified efficiently. More precisely, a data structure is a collection of data
values, the relationships among them, and the functions or operations that can be applied to
the data.

B - Beginner, A - Advanced

Algorithms

An algorithm is an unambiguous specification of how to solve a class of problems. It is
a set of rules that precisely define a sequence of operations.

B - Beginner, A - Advanced

Algorithms by Topic

Algorithms by Paradigm

An algorithmic paradigm is a generic method or approach which underlies the design of a class
of algorithms. It is an abstraction higher than the notion of an algorithm, just as an
algorithm is an abstraction higher than a computer program.

How to use this repository

Install all dependencies

npm install

Run ESLint

You may want to run it to check code quality.

npm run lint

Run all tests

npm test

Run tests by name

npm test -- 'LinkedList'

Playground

You may play with data-structures and algorithms in ./src/playground/playground.js file and write
tests for it in ./src/playground/__test__/playground.test.js.

Then just simply run the following command to test if your playground code works as expected:

npm test -- 'playground'

Useful Information

References

▶ Data Structures and Algorithms on YouTube

Big O Notation

Big O notation is used to classify algorithms according to how their running time or space requirements grow as the input size grows.
On the chart below you may find most common orders of growth of algorithms specified in Big O notation.

Big O graphs

Source: Big O Cheat Sheet.

Below is the list of some of the most used Big O notations and their performance comparisons against different sizes of the input data., Big O Notation, Computations for 10 elements, Computations for 100 elements, Computations for 1000 elements, --------------, ----------------------------, -----------------------------, -------------------------------, O(1), 1, 1, 1, O(log N), 3, 6, 9, O(N), 10, 100, 1000, O(N log N), 30, 600, 9000, O(N^2), 100, 10000, 1000000, O(2^N), 1024, 1.26e+29, 1.07e+301, O(N!), 3628800, 9.3e+157, 4.02e+2567, ### Data Structure Operations Complexity, Data Structure, Access, Search, Insertion, Deletion, Comments, -----------------------, :-------:, :-------:, :-------:, :-------:, :--------, Array, 1, n, n, n, Stack, n, n, 1, 1, Queue, n, n, 1, 1, Linked List, n, n, 1, n, Hash Table, -, n, n, n, In case of perfect hash function costs would be O(1), Binary Search Tree, n, n, n, n, In case of balanced tree costs would be O(log(n)), B-Tree, log(n), log(n), log(n), log(n), Red-Black Tree, log(n), log(n), log(n), log(n), AVL Tree, log(n), log(n), log(n), log(n), Bloom Filter, -, 1, 1, -, False positives are possible while searching, ### Array Sorting Algorithms Complexity, Name, Best, Average, Worst, Memory, Stable, Comments, ---------------------, :-------------:, :-----------------:, :-----------------:, :-------:, :-------:, :--------, Bubble sort, n, n2, n2, 1, Yes, Insertion sort, n, n2, n2, 1, Yes, Selection sort, n2, n2, n2, 1, No, Heap sort, n log(n), n log(n), n log(n), 1, No, Merge sort, n log(n), n log(n), n log(n), n, Yes, Quick sort, n log(n), n log(n), n2, log(n), No, Quicksort is usually done in-place with O(log(n)) stack space, Shell sort, n log(n), depends on gap sequence, n (log(n))2, 1, No, Counting sort, n + r, n + r, n + r, n + r, Yes, r - biggest number in array, Radix sort, n * k, n * k, n * k, n + k, Yes, k - length of longest key

主要指标

概览
名称与所有者trekhleb/javascript-algorithms
主编程语言JavaScript
编程语言JavaScript (语言数: 2)
平台
许可证MIT License
所有者活动
创建于2018-03-24 07:47:04
推送于2025-02-12 16:19:59
最后一次提交2025-02-12 17:19:46
发布数0
用户参与
星数192.3k
关注者数4.3k
派生数30.8k
提交数1.1k
已启用问题?
问题数365
打开的问题数136
拉请求数302
打开的拉请求数228
关闭的拉请求数251
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?