hmr

Project page for End-to-end Recovery of Human Shape and Pose

  • 所有者: akanazawa/hmr
  • 平台:
  • 许可证: Other
  • 分类:
  • 主题:
  • 喜欢:
    0
      比较:

Github星跟踪图

End-to-end Recovery of Human Shape and Pose

Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik
CVPR 2018

Project Page
Teaser Image

Requirements

  • Python 2.7
  • TensorFlow tested on version 1.3, demo alone runs with TF 1.12

Installation

Linux Setup with virtualenv

virtualenv venv_hmr
source venv_hmr/bin/activate
pip install -U pip
deactivate
source venv_hmr/bin/activate
pip install -r requirements.txt

Install TensorFlow

With GPU:

pip install tensorflow-gpu==1.3.0

Without GPU:

pip install tensorflow==1.3.0

Windows Setup with python 3 and Anaconda

This is only partialy tested.

conda env create -f hmr.yml

if you need to get chumpy

https://github.com/mattloper/chumpy/tree/db6eaf8c93eb5ae571eb054575fb6ecec62fd86d

Demo

  1. Download the pre-trained models
wget https://people.eecs.berkeley.edu/~kanazawa/cachedir/hmr/models.tar.gz && tar -xf models.tar.gz
  1. Run the demo
python -m demo --img_path data/coco1.png
python -m demo --img_path data/im1954.jpg

Images should be tightly cropped, where the height of the person is roughly 150px.
On images that are not tightly cropped, you can run
openpose and supply
its output json (run it with --write_json option).
When json_path is specified, the demo will compute the right scale and bbox center to run HMR:

python -m demo --img_path data/random.jpg --json_path data/random_keypoints.json

(The demo only runs on the most confident bounding box, see src/util/openpose.py:get_bbox)

Webcam Demo (thanks @JulesDoe!)

  1. Download pre-trained models like above.
  2. Run webcam Demo
  3. Run the demo
python -m demo --img_path data/coco1.png
python -m demo --img_path data/im1954.jpg

Training code/data

Please see the doc/train.md!

Citation

If you use this code for your research, please consider citing:

@inProceedings{kanazawaHMR18,
  title={End-to-end Recovery of Human Shape and Pose},
  author = {Angjoo Kanazawa
  and Michael J. Black
  and David W. Jacobs
  and Jitendra Malik},
  booktitle={Computer Vision and Pattern Recognition (CVPR)},
  year={2018}
}

Opensource contributions

russoale has created a Python 3 version with TF 2.0: https://github.com/russoale/hmr2.0

Dawars has created a docker image for this project: https://hub.docker.com/r/dawars/hmr/

MandyMo has implemented a pytorch version of the repo: https://github.com/MandyMo/pytorch_HMR.git

Dene33 has made a .ipynb for Google Colab that takes video as input and returns .bvh animation!
https://github.com/Dene33/video_to_bvh


I have not tested them, but the contributions are super cool! Thank you!!

主要指标

概览
名称与所有者akanazawa/hmr
主编程语言Python
编程语言Python (语言数: 2)
平台
许可证Other
所有者活动
创建于2017-12-18 03:22:44
推送于2023-07-10 13:41:54
最后一次提交2021-08-23 17:01:30
发布数0
用户参与
星数1.6k
关注者数64
派生数398
提交数51
已启用问题?
问题数159
打开的问题数17
拉请求数2
打开的拉请求数2
关闭的拉请求数3
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?