gohistogram

Streaming approximate histograms in Go

  • 所有者: VividCortex/gohistogram
  • 平台:
  • 许可证: MIT License
  • 分类:
  • 主题:
  • 喜欢:
    0
      比较:

Github星跟踪图

gohistogram - Histograms in Go

build status

This package provides Streaming Approximate Histograms
for efficient quantile approximations.

The histograms in this package are based on the algorithms found in
Ben-Haim & Yom-Tov's A Streaming Parallel Decision Tree Algorithm
(PDF).
Histogram bins do not have a preset size. As values stream into
the histogram, bins are dynamically added and merged.

Another implementation can be found in the Apache Hive project (see
NumericHistogram).

An example:

histogram

The accurate method of calculating quantiles (like percentiles) requires
data to be sorted. Streaming histograms make it possible to approximate
quantiles without sorting (or even individually storing) values.

NumericHistogram is the more basic implementation of a streaming
histogram. WeightedHistogram implements bin values as exponentially-weighted
moving averages.

A maximum bin size is passed as an argument to the constructor methods. A
larger bin size yields more accurate approximations at the cost of increased
memory utilization and performance.

A picture of kittens:

stack of kittens

Getting started

Using in your own code

$ go get github.com/VividCortex/gohistogram
import "github.com/VividCortex/gohistogram"

Running tests and making modifications

Get the code into your workspace:

$ cd $GOPATH
$ git clone git@github.com:VividCortex/gohistogram.git ./src/github.com/VividCortex/gohistogram

You can run the tests now:

$ cd src/github.com/VividCortex/gohistogram
$ go test .

API Documentation

Full source documentation can be found here.

Contributing

We only accept pull requests for minor fixes or improvements. This includes:

  • Small bug fixes
  • Typos
  • Documentation or comments

Please open issues to discuss new features. Pull requests for new features will be rejected,
so we recommend forking the repository and making changes in your fork for your use case.

License

Copyright (c) 2013 VividCortex

Released under MIT License. Check LICENSE file for details.

主要指标

概览
名称与所有者VividCortex/gohistogram
主编程语言Go
编程语言Go (语言数: 1)
平台
许可证MIT License
所有者活动
创建于2013-07-02 12:53:22
推送于2020-12-15 17:33:31
最后一次提交2020-12-15 14:33:30
发布数1
最新版本名称v1.0.0 (发布于 )
第一版名称v1.0.0 (发布于 )
用户参与
星数176
关注者数18
派生数31
提交数50
已启用问题?
问题数15
打开的问题数3
拉请求数11
打开的拉请求数1
关闭的拉请求数2
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?