go-torch

Stochastic flame graph profiler for Go programs

  • 所有者: uber-archive/go-torch
  • 平台:
  • 许可证: MIT License
  • 分类:
  • 主题:
  • 喜欢:
    0
      比较:

Github星跟踪图

go-torch Build Status Coverage Status GoDoc

go-torch is deprecated, use pprof instead

As of Go 1.11, flamegraph visualizations are available in go tool pprof directly!

# This will listen on :8081 and open a browser.
# Change :8081 to a port of your choice.
$ go tool pprof -http=":8081" [binary] [profile]

If you cannot use Go 1.11, you can get the latest pprof tool and use it instead:

# Get the pprof tool directly
$ go get -u github.com/google/pprof

$ pprof -http=":8081" [binary] [profile]

Synopsis

Tool for stochastically profiling Go programs. Collects stack traces and
synthesizes them into a flame graph. Uses Go's built in pprof library.

Example Flame Graph

Inception

Basic Usage

$ go-torch -h
Usage:
  go-torch [options] [binary] <profile source>

pprof Options:
  -u, --url=         Base URL of your Go program (default: http://localhost:8080)
  -s, --suffix=      URL path of pprof profile (default: /debug/pprof/profile)
  -b, --binaryinput= File path of previously saved binary profile. (binary profile is anything accepted by https://golang.org/cmd/pprof)
      --binaryname=  File path of the binary that the binaryinput is for, used for pprof inputs
  -t, --seconds=     Number of seconds to profile for (default: 30)
      --pprofArgs=   Extra arguments for pprof

Output Options:
  -f, --file=        Output file name (must be .svg) (default: torch.svg)
  -p, --print        Print the generated svg to stdout instead of writing to file
  -r, --raw          Print the raw call graph output to stdout instead of creating a flame graph; use with Brendan Gregg's flame graph perl script (see https://github.com/brendangregg/FlameGraph)
      --title=       Graph title to display in the output file (default: Flame Graph)
      --width=       Generated graph width (default: 1200)
      --hash         Colors are keyed by function name hash
      --colors=      Set color palette. Valid choices are: hot (default), mem, io, wakeup, chain, java,
                     js, perl, red, green, blue, aqua, yellow, purple, orange
      --hash         Graph colors are keyed by function name hash
      --cp           Graph use consistent palette (palette.map)
      --inverted     Icicle graph
Help Options:
  -h, --help         Show this help message

Write flamegraph using /debug/pprof endpoint

The default options will hit http://localhost:8080/debug/pprof/profile for
a 30 second CPU profile, and write it out to torch.svg

$ go-torch
INFO[19:10:58] Run pprof command: go tool pprof -raw -seconds 30 http://localhost:8080/debug/pprof/profile
INFO[19:11:03] Writing svg to torch.svg

You can customize the base URL by using -u

$ go-torch -u http://my-service:8080/
INFO[19:10:58] Run pprof command: go tool pprof -raw -seconds 30 http://my-service:8080/debug/pprof/profile
INFO[19:11:03] Writing svg to torch.svg

Or change the number of seconds to profile using --seconds:

$ go-torch --seconds 5
INFO[19:10:58] Run pprof command: go tool pprof -raw -seconds 5 http://localhost:8080/debug/pprof/profile
INFO[19:11:03] Writing svg to torch.svg

Using pprof arguments

go-torch will pass through arguments to go tool pprof, which lets you take
existing pprof commands and easily make them work with go-torch.

For example, after creating a CPU profile from a benchmark:

$ go test -bench . -cpuprofile=cpu.prof

# This creates a cpu.prof file, and the $PKG.test binary.

The same arguments that can be used with go tool pprof will also work
with go-torch:

$ go tool pprof main.test cpu.prof

# Same arguments work with go-torch
$ go-torch main.test cpu.prof
INFO[19:00:29] Run pprof command: go tool pprof -raw -seconds 30 main.test cpu.prof
INFO[19:00:29] Writing svg to torch.svg

Flags that are not handled by go-torch are passed through as well:

$ go-torch --alloc_objects main.test mem.prof
INFO[19:00:29] Run pprof command: go tool pprof -raw -seconds 30 --alloc_objects main.test mem.prof
INFO[19:00:29] Writing svg to torch.svg

Integrating With Your Application

To add profiling endpoints in your application, follow the official
Go docs here.
If your application is already running a server on the DefaultServeMux,
just add this import to your application.

import _ "net/http/pprof"

If your application is not using the DefaultServeMux, you can still easily
expose pprof endpoints by manually registering the net/http/pprof handlers or by
using a library like this one.

Installation

$ go get github.com/uber/go-torch

You can also use go-torch using docker:

$ docker run uber/go-torch -u http://[address-of-host] -p > torch.svg

Using -p will print the SVG to standard out, which can then be redirected
to a file. This avoids mounting volumes to a container.

Get the flame graph script:

When using the go-torch binary locally, you will need the Flamegraph scripts
in your PATH:

$ cd $GOPATH/src/github.com/uber/go-torch
$ git clone https://github.com/brendangregg/FlameGraph.git

Development and Testing

Install the Go dependencies:

$ go get github.com/Masterminds/glide
$ cd $GOPATH/src/github.com/uber/go-torch
$ glide install

Run the Tests

$ go test ./...
ok    github.com/uber/go-torch   0.012s
ok    github.com/uber/go-torch/graph   0.017s
ok    github.com/uber/go-torch/visualization 0.052s

主要指标

概览
名称与所有者uber-archive/go-torch
主编程语言Go
编程语言Go (语言数: 3)
平台
许可证MIT License
所有者活动
创建于2015-07-21 22:49:42
推送于2018-11-07 07:13:54
最后一次提交2018-11-06 23:13:53
发布数0
用户参与
星数4k
关注者数2.1k
派生数240
提交数125
已启用问题?
问题数0
打开的问题数0
拉请求数44
打开的拉请求数1
关闭的拉请求数6
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?