Fantasy Land Specification
(aka "Algebraic JavaScript Specification")
This project specifies interoperability of common algebraic
structures:
- Setoid
- Ord
- Semigroupoid
- Category
- Semigroup
- Monoid
- Group
- Filterable
- Functor
- Contravariant
- Apply
- Applicative
- Alt
- Plus
- Alternative
- Foldable
- Traversable
- Chain
- ChainRec
- Monad
- Extend
- Comonad
- Bifunctor
- Profunctor
General
An algebra is a set of values, a set of operators that it is closed
under and some laws it must obey.
Each Fantasy Land algebra is a separate specification. An algebra may
have dependencies on other algebras which must be implemented.
Terminology
- "value" is any JavaScript value, including any which have the
structures defined below. - "equivalent" is an appropriate definition of equivalence for the given value.
The definition should ensure that the two values can be safely swapped out in a program that respects abstractions. For example:- Two lists are equivalent if they are equivalent at all indices.
- Two plain old JavaScript objects, interpreted as dictionaries, are equivalent when they are equivalent for all keys.
- Two promises are equivalent when they yield equivalent values.
- Two functions are equivalent if they yield equivalent outputs for equivalent inputs.
Type signature notation
The type signature notation used in this document is described below:1
::"is a member of".e :: tcan be read as: "the expressioneis a member of typet".true :: Boolean- "trueis a member of typeBoolean".42 :: Integer, Number- "42is a member of typeInteger and Number".
- New types can be created via type constructors.
- Type constructors can take zero or more type arguments.
Arrayis a type constructor which takes one type argument.Array Stringis the type of all arrays of strings. Each of the
following has typeArray String:[],['foo', 'bar', 'baz'].Array (Array String)is the type of all arrays of arrays of strings.
Each of the following has typeArray (Array String):[],[ [], [] ],[ [], ['foo'], ['bar', 'baz'] ].
- Lowercase letters stand for type variables.
- Type variables can take any type unless they have been restricted by
means of type constraints (see fat arrow below).
- Type variables can take any type unless they have been restricted by
->(arrow) Function type constructor.->is an infix type constructor that takes two type arguments where
left argument is the input type and the right argument is the output type.->'s input type can be a grouping of types to create the type of a
function which accepts zero or more arguments. The syntax is:
(<input-types>) -> <output-type>, where<input-types>comprises zero
or more comma–space (,)-separated type representations and parens
may be omitted for unary functions.String -> Array Stringis a type satisfied by functions which take a
Stringand return anArray String.String -> Array String -> Array Stringis a type satisfied by functions
which take aStringand return a function which takes anArray String
and returns anArray String.(String, Array String) -> Array Stringis a type satisfied by functions
which take aStringand anArray Stringas arguments and return an
Array String.() -> Numberis a type satisfied by functions
which do not take arguments and return aNumber.
~>(squiggly arrow) Method type constructor.- When a function is a property of an Object, it is called a method. All
methods have an implicit parameter type - the type of which they are a
property. a ~> a -> ais a type satisfied by methods on Objects of typeawhich
take a typeaas an argument and return a value of typea.
- When a function is a property of an Object, it is called a method. All
=>(fat arrow) Expresses constraints on type variables.- In
a ~> a -> a(see squiggly arrow above),acan be of any type.
Semigroup a => a ~> a -> aadds a constraint such that the typea
must now satisfy theSemigrouptypeclass. To satisfy a typeclass means
to lawfully implement all functions/methods specified by that typeclass.
- In
For example:
fantasy-land/traverse :: Applicative f, Traversable t => t a ~> (TypeRep f, a -> f b) -> f (t b)
'-------------------' '--------------------------' '-' '-------------------' '-----'
' ' ' ' '
' ' - type constraints ' ' - argument types ' - return type
' '
'- method name ' - method target type
Type representatives
Certain behaviours are defined from the perspective of a member of a type.
Other behaviours do not require a member. Thus certain algebras require a
type to provide a value-level representative (with certain properties). The
Identity type, for example, could provide Id as its type representative:
Id :: TypeRep Identity.
If a type provides a type representative, each member of the type must have
a constructor property which is a reference to the type representative.
Algebras
Setoid
a['fantasy-land/equals'](a) === true(reflexivity)a['fantasy-land/equals'](b) === b['fantasy-land/equals'](a)(symmetry)- If
a['fantasy-land/equals'](b)andb['fantasy-land/equals'](c), thena['fantasy-land/equals'](c)(transitivity)
fantasy-land/equals method
fantasy-land/equals :: Setoid a => a ~> a -> Boolean
A value which has a Setoid must provide a fantasy-land/equals method. The
fantasy-land/equals method takes one argument:
a['fantasy-land/equals'](b)
-
bmust be a value of the same Setoid- If
bis not the same Setoid, behaviour offantasy-land/equalsis
unspecified (returningfalseis recommended).
- If
-
fantasy-land/equalsmust return a boolean (trueorfalse).
Ord
A value that implements the Ord specification must also implement
the Setoid specification.
a['fantasy-land/lte'](b)orb['fantasy-land/lte'](a)(totality)- If
a['fantasy-land/lte'](b)andb['fantasy-land/lte'](a), thena['fantasy-land/equals'](b)(antisymmetry) - If
a['fantasy-land/lte'](b)andb['fantasy-land/lte'](c), thena['fantasy-land/lte'](c)(transitivity)
fantasy-land/lte method
fantasy-land/lte :: Ord a => a ~> a -> Boolean
A value which has an Ord must provide a fantasy-land/lte method. The
fantasy-land/lte method takes one argument:
a['fantasy-land/lte'](b)
-
bmust be a value of the same Ord- If
bis not the same Ord, behaviour offantasy-land/lteis
unspecified (returningfalseis recommended).
- If
-
fantasy-land/ltemust return a boolean (trueorfalse).
Semigroupoid
a['fantasy-land/compose'](b)['fantasy-land/compose'](c) === a['fantasy-land/compose'](b['fantasy-land/compose'](c))(associativity)
fantasy-land/compose method
fantasy-land/compose :: Semigroupoid c => c i j ~> c j k -> c i k
A value which has a Semigroupoid must provide a fantasy-land/compose method. The
fantasy-land/compose method takes one argument:
a['fantasy-land/compose'](b)
-
bmust be a value of the same Semigroupoid- If
bis not the same semigroupoid, behaviour offantasy-land/composeis
unspecified.
- If
-
fantasy-land/composemust return a value of the same Semigroupoid.
Category
A value that implements the Category specification must also implement
the Semigroupoid specification.
a['fantasy-land/compose'](C['fantasy-land/id']())is equivalent toa(right identity)C['fantasy-land/id']()['fantasy-land/compose'](a)is equivalent toa(left identity)
fantasy-land/id method
fantasy-land/id :: Category c => () -> c a a
A value which has a Category must provide a fantasy-land/id function on its
type representative:
C['fantasy-land/id']()
Given a value c, one can access its type representative via the
constructor property:
c.constructor['fantasy-land/id']()
fantasy-land/idmust return a value of the same Category
Semigroup
a['fantasy-land/concat'](b)['fantasy-land/concat'](c)is equivalent toa['fantasy-land/concat'](b['fantasy-land/concat'](c))(associativity)
fantasy-land/concat method
fantasy-land/concat :: Semigroup a => a ~> a -> a
A value which has a Semigroup must provide a fantasy-land/concat method. The
fantasy-land/concat method takes one argument:
s['fantasy-land/concat'](b)
-
bmust be a value of the same Semigroup- If
bis not the same semigroup, behaviour offantasy-land/concatis
unspecified.
- If
-
fantasy-land/concatmust return a value of the same Semigroup.
Monoid
A value that implements the Monoid specification must also implement
the Semigroup specification.
m['fantasy-land/concat'](M['fantasy-land/empty']())is equivalent tom(right identity)M['fantasy-land/empty']()['fantasy-land/concat'](m)is equivalent tom(left identity)
fantasy-land/empty method
fantasy-land/empty :: Monoid m => () -> m
A value which has a Monoid must provide a fantasy-land/empty function on its
type representative:
M['fantasy-land/empty']()
Given a value m, one can access its type representative via the
constructor property:
m.constructor['fantasy-land/empty']()
fantasy-land/emptymust return a value of the same Monoid
Group
A value that implements the Group specification must also implement
the Monoid specification.
g['fantasy-land/concat'](g['fantasy-land/invert']())is equivalent tog.constructor['fantasy-land/empty']()(right inverse)g['fantasy-land/invert']()['fantasy-land/concat'](g)is equivalent tog.constructor['fantasy-land/empty']()(left inverse)
fantasy-land/invert method
fantasy-land/invert :: Group g => g ~> () -> g
A value which has a Group must provide a fantasy-land/invert method. The
fantasy-land/invert method takes no arguments:
g['fantasy-land/invert']()
fantasy-land/invertmust return a value of the same Group.
Filterable
v['fantasy-land/filter'](x => p(x) && q(x))is equivalent tov['fantasy-land/filter'](p)['fantasy-land/filter'](q)(distributivity)v['fantasy-land/filter'](x => true)is equivalent tov(identity)v['fantasy-land/filter'](x => false)is equivalent tow['fantasy-land/filter'](x => false)
ifvandware values of the same Filterable (annihilation)
fantasy-land/filter method
fantasy-land/filter :: Filterable f => f a ~> (a -> Boolean) -> f a
A value which has a Filterable must provide a fantasy-land/filter method. The fantasy-land/filter
method takes one argument:
v['fantasy-land/filter'](p)
-
pmust be a function.- If
pis not a function, the behaviour offantasy-land/filteris unspecified. pmust return eithertrueorfalse. If it returns any other value,
the behaviour offantasy-land/filteris unspecified.
- If
-
fantasy-land/filtermust return a value of the same Filterable.
Functor
u['fantasy-land/map'](a => a)is equivalent tou(identity)u['fantasy-land/map'](x => f(g(x)))is equivalent tou['fantasy-land/map'](g)['fantasy-land/map'](f)(composition)
fantasy-land/map method
fantasy-land/map :: Functor f => f a ~> (a -> b) -> f b
A value which has a Functor must provide a fantasy-land/map method. The fantasy-land/map
method takes one argument:
u['fantasy-land/map'](f)
-
fmust be a function,- If
fis not a function, the behaviour offantasy-land/mapis
unspecified. fcan return any value.- No parts of
f's return value should be checked.
- If
-
fantasy-land/mapmust return a value of the same Functor
Contravariant
u['fantasy-land/contramap'](a => a)is equivalent tou(identity)u['fantasy-land/contramap'](x => f(g(x)))is equivalent tou['fantasy-land/contramap'](f)['fantasy-land/contramap'](g)
(composition)
fantasy-land/contramap method
fantasy-land/contramap :: Contravariant f => f a ~> (b -> a) -> f b
A value which has a Contravariant must provide a fantasy-land/contramap method. The
fantasy-land/contramap method takes one argument:
u['fantasy-land/contramap'](f)
-
fmust be a function,- If
fis not a function, the behaviour offantasy-land/contramapis
unspecified. fcan return any value.- No parts of
f's return value should be checked.
- If
-
fantasy-land/contramapmust return a value of the same Contravariant
Apply
A value that implements the Apply specification must also
implement the Functor specification.
v['fantasy-land/ap'](u['fantasy-land/ap'](a['fantasy-land/map'](f => g => x => f(g(x)))))is equivalent tov['fantasy-land/ap'](u)['fantasy-land/ap'](a)(composition)
fantasy-land/ap method
fantasy-land/ap :: Apply f => f a ~> f (a -> b) -> f b
A value which has an Apply must provide a fantasy-land/ap method. The fantasy-land/ap
method takes one argument:
a['fantasy-land/ap'](b)
-
bmust be an Apply of a function- If
bdoes not represent a function, the behaviour offantasy-land/apis
unspecified. bmust be same Apply asa.
- If
-
amust be an Apply of any value -
fantasy-land/apmust apply the function in Applybto the value in
Applya- No parts of return value of that function should be checked.
-
The
Applyreturned byfantasy-land/apmust be the same asaandb
Applicative
A value that implements the Applicative specification must also
implement the Apply specification.
v['fantasy-land/ap'](A['fantasy-land/of'](x => x))is equivalent tov(identity)A['fantasy-land/of'](x)['fantasy-land/ap'](A['fantasy-land/of'](f))is equivalent toA['fantasy-land/of'](f(x))(homomorphism)A['fantasy-land/of'](y)['fantasy-land/ap'](u)is equivalent tou['fantasy-land/ap'](A['fantasy-land/of'](f => f(y)))(interchange)
fantasy-land/of method
fantasy-land/of :: Applicative f => a -> f a
A value which has an Applicative must provide a fantasy-land/of function on its
type representative. The fantasy-land/of function takes
one argument:
F['fantasy-land/of'](a)
Given a value f, one can access its type representative via the
constructor property:
f.constructor['fantasy-land/of'](a)
-
fantasy-land/ofmust provide a value of the same Applicative- No parts of
ashould be checked
- No parts of
Alt
A value that implements the Alt specification must also implement
the Functor specification.
a['fantasy-land/alt'](b)['fantasy-land/alt'](c)is equivalent toa['fantasy-land/alt'](b['fantasy-land/alt'](c))(associativity)a['fantasy-land/alt'](b)['fantasy-land/map'](f)is equivalent toa['fantasy-land/map'](f)['fantasy-land/alt'](b['fantasy-land/map'](f))(distributivity)
fantasy-land/alt method
fantasy-land/alt :: Alt f => f a ~> f a -> f a
A value which has a Alt must provide a fantasy-land/alt method. The
fantasy-land/alt method takes one argument:
a['fantasy-land/alt'](b)
-
bmust be a value of the same Alt- If
bis not the same Alt, behaviour offantasy-land/altis
unspecified. aandbcan contain any value of same type.- No parts of
a's andb's containing value should be checked.
- If
-
fantasy-land/altmust return a value of the same Alt.
Plus
A value that implements the Plus specification must also implement
the Alt specification.
x['fantasy-land/alt'](A['fantasy-land/zero']())is equivalent tox(right identity)A['fantasy-land/zero']()['fantasy-land/alt'](x)is equivalent tox(left identity)A['fantasy-land/zero']()['fantasy-land/map'](f)is equivalent toA['fantasy-land/zero']()(annihilation)
fantasy-land/zero method
fantasy-land/zero :: Plus f => () -> f a
A value which has a Plus must provide a fantasy-land/zero function on its
type representative:
A['fantasy-land/zero']()
Given a value x, one can access its type representative via the
constructor property:
x.constructor['fantasy-land/zero']()
fantasy-land/zeromust return a value of the same Plus
Alternative
A value that implements the Alternative specification must also implement
the Applicative and Plus specifications.
x['fantasy-land/ap'](f['fantasy-land/alt'](g))is equivalent tox['fantasy-land/ap'](f)['fantasy-land/alt'](x['fantasy-land/ap'](g))(distributivity)x['fantasy-land/ap'](A['fantasy-land/zero']())is equivalent toA['fantasy-land/zero']()(annihilation)
Foldable
u['fantasy-land/reduce']is equivalent tou['fantasy-land/reduce']((acc, x) => acc.concat([x]), []).reduce
fantasy-land/reduce method
fantasy-land/reduce :: Foldable f => f a ~> ((b, a) -> b, b) -> b
A value which has a Foldable must provide a fantasy-land/reduce method. The fantasy-land/reduce
method takes two arguments:
u['fantasy-land/reduce'](f, x)
-
fmust be a binary function- if
fis not a function, the behaviour offantasy-land/reduceis unspecified. - The first argument to
fmust be the same type asx. fmust return a value of the same type asx.- No parts of
f's return value should be checked.
- if
-
xis the initial accumulator value for the reduction- No parts of
xshould be checked.
- No parts of
Traversable
A value that implements the Traversable specification must also
implement the Functor and Foldable specifications.
-
t(u['fantasy-land/traverse'](F, x => x))is equivalent tou['fantasy-land/traverse'](G, t)for any
tsuch thatt(a)['fantasy-land/map'](f)is equivalent tot(a['fantasy-land/map'](f))(naturality) -
u['fantasy-land/traverse'](F, F['fantasy-land/of'])is equivalent toF['fantasy-land/of'](u)for any ApplicativeF
(identity) -
u['fantasy-land/traverse'](Compose, x => new Compose(x))is equivalent to
new Compose(u['fantasy-land/traverse'](F, x => x)['fantasy-land/map'](x => x['fantasy-land/traverse'](G, x => x)))for
Composedefined below and any ApplicativesFandG(composition)
function Compose(c) {
this.c = c;
}
Compose['fantasy-land/of'] = function(x) {
return new Compose(F['fantasy-land/of'](G['fantasy-land/of'](x)));
};
Compose.prototype['fantasy-land/ap'] = function(f) {
return new Compose(this.c['fantasy-land/ap'](f.c['fantasy-land/map'](u => y => y['fantasy-land/ap'](u))));
};
Compose.prototype['fantasy-land/map'] = function(f) {
return new Compose(this.c['fantasy-land/map'](y => y['fantasy-land/map'](f)));
};
fantasy-land/traverse method
fantasy-land/traverse :: Applicative f, Traversable t => t a ~> (TypeRep f, a -> f b) -> f (t b)
A value which has a Traversable must provide a fantasy-land/traverse method. The fantasy-land/traverse
method takes two arguments:
u['fantasy-land/traverse'](A, f)
-
Amust be the type representative of an
Applicative. -
fmust be a function which returns a value- If
fis not a function, the behaviour offantasy-land/traverseis
unspecified. fmust return a value of the type represented byA.
- If
-
fantasy-land/traversemust return a value of the type represented byA.
Chain
A value that implements the Chain specification must also
implement the Apply specification.
m['fantasy-land/chain'](f)['fantasy-land/chain'](g)is equivalent tom['fantasy-land/chain'](x => f(x)['fantasy-land/chain'](g))(associativity)
fantasy-land/chain method
fantasy-land/chain :: Chain m => m a ~> (a -> m b) -> m b
A value which has a Chain must provide a fantasy-land/chain method. The fantasy-land/chain
method takes one argument:
m['fantasy-land/chain'](f)
-
fmust be a function which returns a value- If
fis not a function, the behaviour offantasy-land/chainis
unspecified. fmust return a value of the same Chain
- If
-
fantasy-land/chainmust return a value of the same Chain
ChainRec
A value that implements the ChainRec specification must also implement the Chain specification.
M['fantasy-land/chainRec']((next, done, v) => p(v) ? d(v)['fantasy-land/map'](done) : n(v)['fantasy-land/map'](next), i)
is equivalent to
(function step(v) { return p(v) ? d(v) : n(v)['fantasy-land/chain'](step); }(i))(equivalence)- Stack usage of
M['fantasy-land/chainRec'](f, i)must be at most a constant multiple of the stack usage offitself.
fantasy-land/chainRec method
fantasy-land/chainRec :: ChainRec m => ((a -> c, b -> c, a) -> m c, a) -> m b
A Type which has a ChainRec must provide a fantasy-land/chainRec function on its
type representative. The fantasy-land/chainRec function
takes two arguments:
M['fantasy-land/chainRec'](f, i)
Given a value m, one can access its type representative via the
constructor property:
m.constructor['fantasy-land/chainRec'](f, i)
fmust be a function which returns a value- If
fis not a function, the behaviour offantasy-land/chainRecis unspecified. ftakes three argumentsnext,done,valuenextis a function which takes one argument of same type asiand can return any valuedoneis a function which takes one argument and returns the same type as the return value ofnextvalueis some value of the same type asi
fmust return a value of the same ChainRec which contains a value returned from eitherdoneornext
- If
fantasy-land/chainRecmust return a value of the same ChainRec which contains a value of same type as argument ofdone
Monad
A value that implements the Monad specification must also implement
the Applicative and Chain specifications.
M['fantasy-land/of'](a)['fantasy-land/chain'](f)is equivalent tof(a)(left identity)m['fantasy-land/chain'](M['fantasy-land/of'])is equivalent tom(right identity)
Extend
A value that implements the Extend specification must also implement the Functor specification.
w['fantasy-land/extend'](g)['fantasy-land/extend'](f)is equivalent tow['fantasy-land/extend'](_w => f(_w['fantasy-land/extend'](g)))
fantasy-land/extend method
fantasy-land/extend :: Extend w => w a ~> (w a -> b) -> w b
An Extend must provide a fantasy-land/extend method. The fantasy-land/extend
method takes one argument:
w['fantasy-land/extend'](f)
-
fmust be a function which returns a value- If
fis not a function, the behaviour offantasy-land/extendis
unspecified. fmust return a value of typev, for some variablevcontained inw.- No parts of
f's return value should be checked.
- If
-
fantasy-land/extendmust return a value of the same Extend.
Comonad
A value that implements the Comonad specification must also implement the Extend specification.
w['fantasy-land/extend'](_w => _w['fantasy-land/extract']())is equivalent tow(left identity)w['fantasy-land/extend'](f)['fantasy-land/extract']()is equivalent tof(w)(right identity)
fantasy-land/extract method
fantasy-land/extract :: Comonad w => w a ~> () -> a
A value which has a Comonad must provide a fantasy-land/extract method on itself.
The fantasy-land/extract method takes no arguments:
w['fantasy-land/extract']()
fantasy-land/extractmust return a value of typev, for some variablevcontained inw.vmust have the same type thatfreturns infantasy-land/extend.
Bifunctor
A value that implements the Bifunctor specification must also implement
the Functor specification.
p['fantasy-land/bimap'](a => a, b => b)is equivalent top(identity)p['fantasy-land/bimap'](a => f(g(a)), b => h(i(b))is equivalent top['fantasy-land/bimap'](g, i)['fantasy-land/bimap'](f, h)(composition)
fantasy-land/bimap method
fantasy-land/bimap :: Bifunctor f => f a c ~> (a -> b, c -> d) -> f b d
A value which has a Bifunctor must provide a fantasy-land/bimap method. The fantasy-land/bimap
method takes two arguments:
c['fantasy-land/bimap'](f, g)
-
fmust be a function which returns a value- If
fis not a function, the behaviour offantasy-land/bimapis unspecified. fcan return any value.- No parts of
f's return value should be checked.
- If
-
gmust be a function which returns a value- If
gis not a function, the behaviour offantasy-land/bimapis unspecified. gcan return any value.- No parts of
g's return value should be checked.
- If
-
fantasy-land/bimapmust return a value of the same Bifunctor.
Profunctor
A value that implements the Profunctor specification must also implement
the Functor specification.
p['fantasy-land/promap'](a => a, b => b)is equivalent top(identity)p['fantasy-land/promap'](a => f(g(a)), b => h(i(b)))is equivalent top['fantasy-land/promap'](f, i)['fantasy-land/promap'](g, h)(composition)
fantasy-land/promap method
fantasy-land/promap :: Profunctor p => p b c ~> (a -> b, c -> d) -> p a d
A value which has a Profunctor must provide a fantasy-land/promap method.
The fantasy-land/promap method takes two arguments:
c['fantasy-land/promap'](f, g)
-
fmust be a function which returns a value- If
fis not a function, the behaviour offantasy-land/promapis unspecified. fcan return any value.- No parts of
f's return value should be checked.
- If
-
gmust be a function which returns a value- If
gis not a function, the behaviour offantasy-land/promapis unspecified. gcan return any value.- No parts of
g's return value should be checked.
- If
-
fantasy-land/promapmust return a value of the same Profunctor
Derivations
When creating data types which satisfy multiple algebras, authors may choose
to implement certain methods then derive the remaining methods. Derivations:
-
fantasy-land/equalsmay be derived fromfantasy-land/lte:function equals(other) { return this['fantasy-land/lte'](other) && other['fantasy-land/lte'](this); } -
fantasy-land/mapmay be derived fromfantasy-land/apandfantasy-land/of:function map(f) { return this['fantasy-land/ap'](this.constructor['fantasy-land/of'](f)); } -
fantasy-land/mapmay be derived fromfantasy-land/chainandfantasy-land/of:function map(f) { return this['fantasy-land/chain'](a => this.constructor['fantasy-land/of'](f(a))); } -
fantasy-land/mapmay be derived fromfantasy-land/bimap:function map(f) { return this['fantasy-land/bimap'](a => a, f); } -
fantasy-land/mapmay be derived fromfantasy-land/promap:function map(f) { return this['fantasy-land/promap'](a => a, f); } -
fantasy-land/apmay be derived fromfantasy-land/chain:function ap(m) { return m['fantasy-land/chain'](f => this['fantasy-land/map'](f)); } -
fantasy-land/reducemay be derived as follows:function reduce(f, acc) { function Const(value) { this.value = value; } Const['fantasy-land/of'] = function(_) { return new Const(acc); }; Const.prototype['fantasy-land/map'] = function(_) { return this; }; Const.prototype['fantasy-land/ap'] = function(b) { return new Const(f(b.value, this.value)); }; return this['fantasy-land/traverse'](x => new Const(x), Const['fantasy-land/of']).value; } -
fantasy-land/mapmay be derived as follows:function map(f) { function Id(value) { this.value = value; } Id['fantasy-land/of'] = function(x) { return new Id(x); }; Id.prototype['fantasy-land/map'] = function(f) { return new Id(f(this.value)); }; Id.prototype['fantasy-land/ap'] = function(b) { return new Id(this.value(b.value)); }; return this['fantasy-land/traverse'](x => Id['fantasy-land/of'](f(x)), Id['fantasy-land/of']).value; } -
fantasy-land/filtermay be derived fromfantasy-land/of,fantasy-land/chain, andfantasy-land/zero:function filter(pred) { var F = this.constructor; return this['fantasy-land/chain'](x => pred(x) ? F['fantasy-land/of'](x) : F['fantasy-land/zero']()); } -
fantasy-land/filtermay be derived fromfantasy-land/concat,fantasy-land/of,fantasy-land/zero, and
fantasy-land/reduce:function filter(pred) { var F = this.constructor; return this['fantasy-land/reduce']((f, x) => pred(x) ? f['fantasy-land/concat'](F['fantasy-land/of'](x)) : f, F['fantasy-land/zero']()); }
If a data type provides a method which could be derived, its behaviour must
be equivalent to that of the derivation (or derivations).
Notes
- If there's more than a single way to implement the methods and
laws, the implementation should choose one and provide wrappers for
other uses. - It's discouraged to overload the specified methods. It can easily
result in broken and buggy behaviour. - It is recommended to throw an exception on unspecified behaviour.
- An
Identitycontainer which implements many of the methods is provided by
sanctuary-identity.
Alternatives
There also exists Static Land Specification
with exactly the same ideas as Fantasy Land but based on static methods instead of instance methods.