efficientnet

Implementation of EfficientNet model. Keras and TF.Keras.

Github星跟踪图

EfficientNet Keras (and TensorFlow Keras)

This repository contains a Keras (and TensorFlow Keras) reimplementation of EfficientNet, a lightweight convolutional neural network architecture achieving the state-of-the-art accuracy with an order of magnitude fewer parameters and FLOPS, on both ImageNet and
five other commonly used transfer learning datasets.

The codebase is heavily inspired by the TensorFlow implementation.

Important!

There was a huge library update 24 of July. Now efficintnet works with both frameworks: keras and tensorflow.keras.
If you have models, trained before that date, to load them, please, use efficientnet of 0.0.4 version (PyPI). You can roll back using pip install -U efficientnet==0.0.4.

Table of Contents

  1. About EfficientNet Models
  2. Examples
  3. Models
  4. Installation
  5. Frequently Asked Questions
  6. Acknowledgements

About EfficientNet Models

EfficientNets rely on AutoML and compound scaling to achieve superior performance without compromising resource efficiency. The AutoML Mobile framework has helped develop a mobile-size baseline network, EfficientNet-B0, which is then improved by the compound scaling method to obtain EfficientNet-B1 to B7.

EfficientNets achieve state-of-the-art accuracy on ImageNet with an order of magnitude better efficiency:

  • In high-accuracy regime, EfficientNet-B7 achieves the state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy on ImageNet with 66M parameters and 37B FLOPS. At the same time, the model is 8.4x smaller and 6.1x faster on CPU inference than the former leader, Gpipe.

  • In middle-accuracy regime, EfficientNet-B1 is 7.6x smaller and 5.7x faster on CPU inference than ResNet-152, with similar ImageNet accuracy.

  • Compared to the widely used ResNet-50, EfficientNet-B4 improves the top-1 accuracy from 76.3% of ResNet-50 to 82.6% (+6.3%), under similar FLOPS constraints.

Examples

  • Initializing the model:
# models can be build with Keras or Tensorflow frameworks
# use keras and tfkeras modules respectively
# efficientnet.keras / efficientnet.tfkeras
import efficientnet.keras as efn 

model = efn.EfficientNetB0(weights='imagenet')

  • Loading the pre-trained weights:
# model use some custom objects, so before loading saved model
# import module your network was build with
# e.g. import efficientnet.keras / import efficientnet.tfkeras
import efficientnet.tfkeras
from tensorflow.keras.models import load_model

model = load_model('path/to/model.h5')

See the complete example of loading the model and making an inference in the Jupyter notebook here.

Models

The performance of each model variant using the pre-trained weights converted from checkpoints provided by the authors is as follows:, Architecture, @top1*, --------------, :----:, EfficientNetB0, 0.772, EfficientNetB1, 0.791, EfficientNetB2, 0.802, EfficientNetB3, 0.816, EfficientNetB4, 0.830, EfficientNetB5, 0.837, EfficientNetB6, 0.841, EfficientNetB7, 0.844, * - topK accuracy score for converted models (imagenet val set)

Installation

Requirements

  • Keras >= 2.2.0 / TensorFlow >= 1.12.0
  • keras_applications >= 1.0.7
  • scikit-image

Installing from the source

$ pip install -U git+https://github.com/qubvel/efficientnet

Installing from PyPI

PyPI stable release

$ pip install -U efficientnet

PyPI latest release (with keras and tf.keras support)

$ pip install -U --pre efficientnet

Frequently Asked Questions

  • How can I convert the original TensorFlow checkpoints to Keras HDF5?

Pick the target directory (like dist) and run the converter script from the repo directory as follows:

$ ./scripts/convert_efficientnet.sh --target_dir dist

You can also optionally create the virtual environment with all the dependencies installed by adding --make_venv=true and operate in a self-destructing temporary location instead of the target directory by setting --tmp_working_dir=true.

Acknowledgements

I would like to thanks community members who actively contribute to this repository:

  1. Sasha Illarionov (@sdll) for preparing automated script for weights conversion
  2. Björn Barz (@Callidior) for model code adaptation for keras and tensorflow.keras frameworks

主要指标

概览
名称与所有者qubvel/efficientnet
主编程语言Python
编程语言Python (语言数: 3)
平台
许可证Apache License 2.0
所有者活动
创建于2019-05-31 04:21:09
推送于2024-01-24 22:27:34
最后一次提交2021-07-16 17:03:20
发布数10
最新版本名称v1.1.1 (发布于 )
第一版名称v0.0.1 (发布于 )
用户参与
星数2.1k
关注者数36
派生数465
提交数66
已启用问题?
问题数115
打开的问题数57
拉请求数30
打开的拉请求数8
关闭的拉请求数5
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?