Deep AutoEncoders for Collaborative Filtering
This is not an official NVIDIA product. It is a research project described in: "Training Deep AutoEncoders for Collaborative Filtering"(https://arxiv.org/abs/1708.01715)
The model
The model is based on deep AutoEncoders.
Requirements
- Python 3.6
- Pytorch:
pipenv install
- CUDA (recommended version >= 8.0)
Training using mixed precision with Tensor Cores
- You would need NVIDIA Volta-based GPU
- Checkout mixed precision branch
- For theory on mixed precision training see Mixed Precision Training paper
Getting Started
Run unittests first
The code is intended to run on GPU. Last test can take a minute or two.
$ python -m unittest test/data_layer_tests.py
$ python -m unittest test/test_model.py
Tutorial
Checkout this tutorial by miguelgfierro.
Get the data
Note: Run all these commands within your DeepRecommender
folder
- Download from here into your
DeepRecommender
folder
$ tar -xvf nf_prize_dataset.tar.gz
$ tar -xf download/training_set.tar
$ python ./data_utils/netflix_data_convert.py training_set Netflix
Data stats, Dataset, Netflix 3 months, Netflix 6 months, Netflix 1 year, Netflix full, --------, ----------------, ----------------, -----------, ------------, Ratings train, 13,675,402, 29,179,009, 41,451,832, 98,074,901, Users train, 311,315, 390,795, 345,855, 477,412, Items train, 17,736, 17,757, 16,907, 17,768, Time range train, 2005-09-01 to 2005-11-31, 2005-06-01 to 2005-11-31, 2004-06-01 to 2005-05-31, 1999-12-01 to 2005-11-31, --------, ----------------, -----------, ------------, Ratings test, 2,082,559, 2,175,535, 3,888,684, 2,250,481, Users test, 160,906, 169,541, 197,951, 173,482, Items test, 17,261, 17,290, 16,506, 17,305, Time range test, 2005-12-01 to 2005-12-31, 2005-12-01 to 2005-12-31, 2005-06-01 to 2005-06-31, 2005-12-01 to 2005-12-31
Train the model
In this example, the model will be trained for 12 epochs. In paper we train for 102.
python run.py --gpu_ids 0 \
--path_to_train_data Netflix/NF_TRAIN \
--path_to_eval_data Netflix/NF_VALID \
--hidden_layers 512,512,1024 \
--non_linearity_type selu \
--batch_size 128 \
--logdir model_save \
--drop_prob 0.8 \
--optimizer momentum \
--lr 0.005 \
--weight_decay 0 \
--aug_step 1 \
--noise_prob 0 \
--num_epochs 12 \
--summary_frequency 1000
Note that you can run Tensorboard in parallel
$ tensorboard --logdir=model_save
Run inference on the Test set
python infer.py \
--path_to_train_data Netflix/NF_TRAIN \
--path_to_eval_data Netflix/NF_TEST \
--hidden_layers 512,512,1024 \
--non_linearity_type selu \
--save_path model_save/model.epoch_11 \
--drop_prob 0.8 \
--predictions_path preds.txt
Compute Test RMSE
python compute_RMSE.py --path_to_predictions=preds.txt
After 12 epochs you should get RMSE around 0.927. Train longer to get below 0.92
Results
It should be possible to achieve the following results. Iterative output re-feeding should be applied
once during each iteration.
(exact numbers will vary due to randomization), DataSet, RMSE, Model Architecture, --------, ----------------, ----------------, Netflix 3 months, 0.9373, n,128,256,256,dp(0.65),256,128,n, Netflix 6 months, 0.9207, n,256,256,512,dp(0.8),256,256,n, Netflix 1 year, 0.9225, n,256,256,512,dp(0.8),256,256,n, Netflix full, 0.9099, n,512,512,1024,dp(0.8),512,512,n