DeepLearn

使用 Keras、Tensorflow 和 Scikit Learn 在 Python 中实现有关深度学习+ NLP+ CV 的研究论文。「Implementation of research papers on Deep Learning+ NLP+ CV in Python using Keras, Tensorflow and Scikit Learn.」

Github星跟踪图

DeepLearn

Welcome to DeepLearn. This repository contains implementation of following research papers on NLP, CV, ML, and deep learning.

- Latest Update : Added _deeplearn_utils modules. Check the releases for description of new features.

[1] Correlation Neural Networks. CV, transfer learning, representation learning. code

[2] Reasoning With Neural Tensor Networks for Knowledge Base Completion. NLP, ML. code

[3] Common Representation Learning Using Step-based Correlation Multi-Modal CNN. CV, transfer learning, representation learning. code

[4] ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence Pairs. NLP, deep learning, sentence matching. code

[5] Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks. NLP, deep learning, CQA. code

[6] Combining Neural, Statistical and External Features for Fake News Stance Identification. NLP, IR, deep learning. code

[7] WIKIQA: A Challenge Dataset for Open-Domain Question Answering. NLP, deep learning, CQA. code

[8] Siamese Recurrent Architectures for Learning Sentence Similarity. NLP, sentence similarity, deep learning. code

[9] Convolutional Neural Tensor Network Architecture for Community Question Answering. NLP, deep learning, CQA. code

[10] Map-Reduce for Machine Learning on Multicore. map-reduce, hadoop, ML. code

[11] Teaching Machines to Read and Comprehend. NLP, deep learning. code

[12] Improved Representation Learning for Question Answer Matching. NLP, deep learning, CQA. code

[13] External features for community question answering. NLP, deep learning, CQA. code

[14] Language Identification and Disambiguation in Indian Mixed-Script. NLP, IR, ML. code

[15] Construction of a Semi-Automated model for FAQ Retrieval via Short Message Service. NLP, IR, ML. code

Dependencies:

The required dependencies are mentioned in requirement.txt. I will also use dl-text modules for preparing the datasets. If you haven't use it, please do have a quick look at it.

$ pip install -r requirements.txt

主要指标

概览
名称与所有者GauravBh1010tt/DeepLearn
主编程语言Python
编程语言Python (语言数: 1)
平台
许可证MIT License
所有者活动
创建于2017-05-20 09:46:28
推送于2022-12-04 23:59:48
最后一次提交2022-12-04 18:59:48
发布数2
最新版本名称v1.1 (发布于 )
第一版名称v1.0 (发布于 )
用户参与
星数1.8k
关注者数110
派生数351
提交数220
已启用问题?
问题数18
打开的问题数10
拉请求数4
打开的拉请求数3
关闭的拉请求数2
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?