deep-photo-styletransfer

Code and data for paper "Deep Photo Style Transfer": https://arxiv.org/abs/1703.07511

  • 所有者: luanfujun/deep-photo-styletransfer
  • 平台:
  • 许可证:
  • 分类:
  • 主题:
  • 喜欢:
    0
      比较:

Github星跟踪图

deep-photo-styletransfer

Code and data for paper "Deep Photo Style Transfer"

Disclaimer

This software is published for academic and non-commercial use only.

Setup

This code is based on torch. It has been tested on Ubuntu 14.04 LTS.

Dependencies:

CUDA backend:

Download VGG-19:

sh models/download_models.sh

Compile cuda_utils.cu (Adjust PREFIX and NVCC_PREFIX in makefile for your machine):

make clean && make

Usage

Quick start

To generate all results (in examples/) using the provided scripts, simply run

run('gen_laplacian/gen_laplacian.m')

in Matlab or Octave and then

python gen_all.py

in Python. The final output will be in examples/final_results/.

Basic usage

  1. Given input and style images with semantic segmentation masks, put them in examples/ respectively. They will have the following filename form: examples/input/in<id>.png, examples/style/tar<id>.png and examples/segmentation/in<id>.png, examples/segmentation/tar<id>.png;
  2. Compute the matting Laplacian matrix using gen_laplacian/gen_laplacian.m in Matlab. The output matrix will have the following filename form: gen_laplacian/Input_Laplacian_3x3_1e-7_CSR<id>.mat;

Note: Please make sure that the content image resolution is consistent for Matting Laplacian computation in Matlab and style transfer in Torch, otherwise the result won't be correct.

  1. Run the following script to generate segmented intermediate result:
th neuralstyle_seg.lua -content_image <input> -style_image <style> -content_seg <inputMask> -style_seg <styleMask> -index <id> -serial <intermediate_folder>
  1. Run the following script to generate final result:
th deepmatting_seg.lua -content_image <input> -style_image <style> -content_seg <inputMask> -style_seg <styleMask> -index <id> -init_image <intermediate_folder/out<id>_t_1000.png> -serial <final_folder> -f_radius 15 -f_edge 0.01

You can pass -backend cudnn and -cudnn_autotune to both Lua scripts (step 3.
and 4.) to potentially improve speed and memory usage. libcudnn.so must be in
your LD_LIBRARY_PATH. This requires cudnn.torch.

Image segmentation

Note: In the main paper we generate all comparison results using automatic scene segmentation algorithm modified from DilatedNet. Manual segmentation enables more diverse tasks hence we provide the masks in examples/segmentation/.

The mask colors we used (you could add more colors in ExtractMask function in two *.lua files):, Color variable, RGB Value, Hex Value, -------------, -------------, -------------, blue, 0 0 255, 0000ff, green, 0 255 0, 00ff00, black, 0 0 0, 000000, white, 255 255 255, ffffff, red, 255 0 0, ff0000, yellow, 255 255 0, ffff00, grey, 128 128 128, 808080, lightblue, 0 255 255, 00ffff, purple, 255 0 255, ff00ff , Here are some automatic and manual tools for creating a segmentation mask for a photo image:

Automatic:

Manual:

Examples

Here are some results from our algorithm (from left to right are input, style and our output):

Acknowledgement

  • Our torch implementation is based on Justin Johnson's code;
  • We use Anat Levin's Matlab code to compute the matting Laplacian matrix.

Citation

If you find this work useful for your research, please cite:

@article{luan2017deep,
  title={Deep Photo Style Transfer},
  author={Luan, Fujun and Paris, Sylvain and Shechtman, Eli and Bala, Kavita},
  journal={arXiv preprint arXiv:1703.07511},
  year={2017}
}

Contact

Feel free to contact me if there is any question (Fujun Luan fl356@cornell.edu).

主要指标

概览
名称与所有者luanfujun/deep-photo-styletransfer
主编程语言MATLAB
编程语言Cuda (语言数: 7)
平台
许可证
所有者活动
创建于2017-03-22 04:47:29
推送于2021-08-02 01:07:44
最后一次提交2017-07-13 19:14:14
发布数0
用户参与
星数10k
关注者数425
派生数1.4k
提交数93
已启用问题?
问题数66
打开的问题数29
拉请求数8
打开的拉请求数2
关闭的拉请求数4
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?