deep-image-prior

Image restoration with neural networks but without learning.

  • 所有者: DmitryUlyanov/deep-image-prior
  • 平台:
  • 许可证: Other
  • 分类:
  • 主题:
  • 喜欢:
    0
      比较:

Github星跟踪图

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make sure you get similar results to the paper first. Easiest to check using text inpainting notebook. Try to set double precision mode or turn off cudnn.

Deep image prior

In this repository we provide Jupyter Notebooks to reproduce each figure from the paper:

Deep Image Prior

CVPR 2018

Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky

(https://sites.skoltech.ru/app/data/uploads/sites/25/2018/04/deep_image_prior.pdf) (https://box.skoltech.ru/index.php/s/ib52BOoV58ztuPM) (https://dmitryulyanov.github.io/deep_image_prior)

Here we provide hyperparameters and architectures, that were used to generate the figures. Most of them are far from optimal. Do not hesitate to change them and see the effect.

We will expand this README with a list of hyperparameters and options shortly.

Install

Here is the list of libraries you need to install to execute the code:

  • python = 3.6
  • pytorch = 0.4
  • numpy
  • scipy
  • matplotlib
  • scikit-image
  • jupyter

All of them can be installed via conda (anaconda), e.g.

conda install jupyter

or create an conda env with all dependencies via environment file

conda env create -f environment.yml

Docker image

Alternatively, you can use a Docker image that exposes a Jupyter Notebook with all required dependencies. To build this image ensure you have both docker and nvidia-docker installed, then run

nvidia-docker build -t deep-image-prior .

After the build you can start the container as

nvidia-docker run --rm -it --ipc=host -p 8888:8888 deep-image-prior

you will be provided an URL through which you can connect to the Jupyter notebook.

Citation

@article{UlyanovVL17,
    author    = {Ulyanov, Dmitry and Vedaldi, Andrea and Lempitsky, Victor},
    title     = {Deep Image Prior},
    journal   = {arXiv:1711.10925},
    year      = {2017}
}

主要指标

概览
名称与所有者DmitryUlyanov/deep-image-prior
主编程语言Jupyter Notebook
编程语言Jupyter Notebook (语言数: 3)
平台
许可证Other
所有者活动
创建于2017-11-29 22:33:00
推送于2023-04-27 03:47:44
最后一次提交2020-05-09 13:57:11
发布数0
用户参与
星数8k
关注者数227
派生数1.4k
提交数61
已启用问题?
问题数98
打开的问题数67
拉请求数7
打开的拉请求数3
关闭的拉请求数5
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?