Caffe

Caffe:一个快速开放的深度学习框架。(Caffe: a fast open framework for deep learning.)

Github星跟踪图

Caffe 是一个深度学习框架,考虑到了表达式、速度和模块化。它是由伯克利人工智能研究(BAIR)、伯克利视觉和学习中心(BVLC)和社区贡献者开发的。

查看项目网站,了解所有详情,例如

和分步示例。

自定义分发

社区

通过 https://gitter.im/BVLC/caffe 加入聊天。

请加入 caffe-users 群组gitter 聊天,提出问题并讨论方法和模型。收集有关问题的框架开发讨论和详尽的错误报告。

酿造快乐吧!

许可和引用

Caffe 是根据 BSD 2-Clause license 许可发行的。 BAIR/BVLC 参考模型已发布,可以不受限制地使用。

如果它有助于您的研究,请在您的出版物中引用 Caffe:

@article{jia2014caffe,
  Author = {Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor},
  Journal = {arXiv preprint arXiv:1408.5093},
  Title = {Caffe: Convolutional Architecture for Fast Feature Embedding},
  Year = {2014}
}

主要指标

概览
名称与所有者BVLC/caffe
主编程语言C++
编程语言CMake (语言数: 8)
平台BSD, Linux, Mac, Windows, Docker
许可证Other
所有者活动
创建于2013-09-12 18:39:48
推送于2024-07-31 23:10:28
最后一次提交2020-02-13 08:20:36
发布数14
最新版本名称1.0 (发布于 )
第一版名称v0.1 (发布于 )
用户参与
星数34.3k
关注者数2.1k
派生数18.6k
提交数4.2k
已启用问题?
问题数4800
打开的问题数898
拉请求数1087
打开的拉请求数286
关闭的拉请求数869
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?

Caffe

Build Status
License

Caffe is a deep learning framework made with expression, speed, and modularity in mind.
It is developed by Berkeley AI Research (BAIR)/The Berkeley Vision and Learning Center (BVLC) and community contributors.

Check out the project site for all the details like

and step-by-step examples.

Custom distributions

Community

Join the chat at https://gitter.im/BVLC/caffe

Please join the caffe-users group or gitter chat to ask questions and talk about methods and models.
Framework development discussions and thorough bug reports are collected on Issues.

Happy brewing!

License and Citation

Caffe is released under the BSD 2-Clause license.
The BAIR/BVLC reference models are released for unrestricted use.

Please cite Caffe in your publications if it helps your research:

@article{jia2014caffe,
  Author = {Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor},
  Journal = {arXiv preprint arXiv:1408.5093},
  Title = {Caffe: Convolutional Architecture for Fast Feature Embedding},
  Year = {2014}
}