3DDFA

The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Github星跟踪图

Face Alignment in Full Pose Range: A 3D Total Solution

License: MIT
HitCount
stars
GitHub issues
GitHub repo size

By Jianzhu Guo.

[Updates]

  • 2019.6.17: Adding a video demo contributed by zjjMaiMai.
  • 2019.5.2: Evaluating inference speed on CPU with PyTorch v1.1.0, see here and speed_cpu.py.
  • 2019.4.27: A simple render pipline running at ~25ms/frame (720p), see rendering.py for more details.
  • 2019.4.24: Providing the demo building of obama, see demo@obama/readme.md for more details.
  • 2019.3.28: Some updates.
  • 2018.12.23: Add several features: depth image estimation, PNCC, PAF feature and obj serialization. See dump_depth, dump_pncc, dump_paf, dump_obj options for more details.
  • 2018.12.2: Support landmark-free face cropping, see dlib_landmark option.
  • 2018.12.1: Refine code and add pose estimation feature, see utils/estimate_pose.py for more details.
  • 2018.11.17: Refine code and map the 3d vertex to original image space.
  • 2018.11.11: Update end-to-end inference pipeline: infer/serialize 3D face shape and 68 landmarks given one arbitrary image, please see readme.md below for more details.
  • 2018.10.4: Add Matlab face mesh rendering demo in visualize.
  • 2018.9.9: Add pre-process of face cropping in benchmark.

[Todo]

Introduction

This repo holds the pytorch improved version of the paper: Face Alignment in Full Pose Range: A 3D Total Solution. Several works beyond the original paper are added, including the real-time training, training strategies. Therefore, this repo is an improved version of the original work. As far, this repo releases the pre-trained first-stage pytorch models of MobileNet-V1 structure, the pre-processed training&testing dataset and codebase. Note that the inference time is about 0.27ms per image (input batch with 128 images as an input batch) on GeForce GTX TITAN X.

This repo will keep updating in my spare time, and any meaningful issues and PR are welcomed.

Several results on ALFW-2000 dataset (inferenced from model phase1_wpdc_vdc.pth.tar) are shown below.

Applications & Features

1. Face Alignment

2. Face Reconstruction

3. 3D Pose Estimation

4. Depth Image Estimation

5. PNCC & PAF Features

Getting started

Requirements

  • PyTorch >= 0.4.1 (PyTorch v1.1.0 is tested successfully on macOS and Linux.)
  • Python >= 3.6 (Numpy, Scipy, Matplotlib)
  • Dlib (Dlib is optionally for face and landmarks detection. There is no need to use Dlib if you can provide face bouding bbox and landmarks. Besides, you can try the two-step inference strategy without initialized landmarks.)
  • OpenCV (Python version, for image IO opertations.)
  • Cython (For accelerating depth and PNCC render.)
  • Platform: Linux or macOS (Windows is not tested.)
# installation structions
sudo pip3 install torch torchvision # for cpu version. more option to see https://pytorch.org
sudo pip3 install numpy scipy matplotlib
sudo pip3 install dlib==19.5.0 # 19.15+ version may cause conflict with pytorch in Linux, this may take several minutes
sudo pip3 install opencv-python
sudo pip3 install cython

In addition, I strongly recommend using Python3.6+ instead of older version for its better design.

Usage

  1. Clone this repo (this may take some time as it is a little big)

    git clone https://github.com/cleardusk/3DDFA.git  # or git@github.com:cleardusk/3DDFA.git
    cd 3DDFA
    

    Then, download dlib landmark pre-trained model in Google Drive or Baidu Yun, and put it into models directory. (To reduce this repo's size, I remove some large size binary files including this model, so you should download it : ) )

  2. Build cython module (just one line for building)

    cd utils/cython
    python3 setup.py build_ext -i
    

    This is for accelerating depth estimation and PNCC render since Python is too slow in for loop.

  3. Run the main.py with arbitrary image as input

    python3 main.py -f samples/test1.jpg
    

    If you can see these output log in terminal, you run it successfully.

    Dump tp samples/test1_0.ply
    Save 68 3d landmarks to samples/test1_0.txt
    Dump obj with sampled texture to samples/test1_0.obj
    Dump tp samples/test1_1.ply
    Save 68 3d landmarks to samples/test1_1.txt
    Dump obj with sampled texture to samples/test1_1.obj
    Dump to samples/test1_pose.jpg
    Dump to samples/test1_depth.png
    Dump to samples/test1_pncc.png
    Save visualization result to samples/test1_3DDFA.jpg
    

    Because test1.jpg has two faces, there are two .ply and .obj files (can be rendered by Meshlab or Microsoft 3D Builder) predicted. Depth, PNCC, PAF and pose estimation are all set true by default. Please run python3 main.py -h or review the code for more details.

    The 68 landmarks visualization result samples/test1_3DDFA.jpg and pose estimation result samples/test1_pose.jpg are shown below:

  1. Additional example

    python3 ./main.py -f samples/emma_input.jpg --bbox_init=two --dlib_bbox=false
    

Citation

@article{zhu2017face,
  title={Face Alignment in Full Pose Range: A 3D Total Solution},
  author={Zhu, Xiangyu and Lei, Zhen and Li, Stan Z and others},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2017},
  publisher={IEEE}
}

@misc{3ddfa_cleardusk,
  author =       {Jianzhu Guo, Xiangyu Zhu and Zhen Lei},
  title =        {3DDFA},
  howpublished = {\url{https://github.com/cleardusk/3DDFA}},
  year =         {2018}
}

Inference speed

CPU

Just run

python3 speed_cpu.py

On my MBP (i5-8259U CPU @ 2.30GHz on 13-inch MacBook Pro), based on PyTorch v1.1.0, with a single input, the running output is:

Inference speed: 14.50±0.11 ms

GPU

When input batch size is 128, the total inference time of MobileNet-V1 takes about 34.7ms. The average speed is about 0.27ms/pic.

Training details

The training scripts lie in training directory. The related resources are in below table., Data, Download Link, Description, :-:, :-:, :-:, train.configs, BaiduYun or Google Drive, 217M, The directory contraining 3DMM params and filelists of training dataset, train_aug_120x120.zip, BaiduYun or Google Drive, 2.15G, The cropped images of augmentation training dataset, test.data.zip, BaiduYun or Google Drive, 151M, The cropped images of AFLW and ALFW-2000-3D testset, After preparing the training dataset and configuration files, go into training directory and run the bash scripts to train. train_wpdc.sh, train_vdc.sh and train_pdc.sh are examples of training scripts. After configuring the training and testing sets, just run them for training. Take train_wpdc.sh for example as below:

#!/usr/bin/env bash

LOG_ALIAS=$1
LOG_DIR="logs"
mkdir -p ${LOG_DIR}

LOG_FILE="${LOG_DIR}/${LOG_ALIAS}_`date +'%Y-%m-%d_%H:%M.%S'`.log"
#echo $LOG_FILE

./train.py --arch="mobilenet_1" \
    --start-epoch=1 \
    --loss=wpdc \
    --snapshot="snapshot/phase1_wpdc" \
    --param-fp-train='../train.configs/param_all_norm.pkl' \
    --param-fp-val='../train.configs/param_all_norm_val.pkl' \
    --warmup=5 \
    --opt-style=resample \
    --resample-num=132 \
    --batch-size=512 \
    --base-lr=0.02 \
    --epochs=50 \
    --milestones=30,40 \
    --print-freq=50 \
    --devices-id=0,1 \
    --workers=8 \
    --filelists-train="../train.configs/train_aug_120x120.list.train" \
    --filelists-val="../train.configs/train_aug_120x120.list.val" \
    --root="/path/to//train_aug_120x120" \
    --log-file="${LOG_FILE}"

The specific training parameters are all presented in bash scripts, including learning rate, mibi-batch size, epochs and so on.

Evaluation

First, you should download the cropped testset ALFW and ALFW-2000-3D in test.data.zip, then unzip it and put it in the root directory.
Next, run the benchmark code by providing trained model path.
I have already provided five pre-trained models in models directory (seen in below table). These models are trained using different loss in the first stage. The model size is about 13M due to the high efficiency of MobileNet-V1 structure.

python3 ./benchmark.py -c models/phase1_wpdc_vdc.pth.tar

The performances of pre-trained models are shown below. In the first stage, the effectiveness of different loss is in order: WPDC > VDC > PDC. While the strategy using VDC to finetune WPDC achieves the best result., Model, AFLW (21 pts), AFLW 2000-3D (68 pts), Download Link, :-:, :-:, :-:, :-:, phase1_pdc.pth.tar, 6.956±0.981, 5.644±1.323, Baidu Yun or Google Drive, phase1_vdc.pth.tar, 6.717±0.924, 5.030±1.044, Baidu Yun or Google Drive, phase1_wpdc.pth.tar, 6.348±0.929, 4.759±0.996, Baidu Yun or Google Drive, phase1_wpdc_vdc.pth.tar, 5.401±0.754, 4.252±0.976, In this repo., ## FQA

  1. Face bounding box initialization

    The original paper shows that using detected bounding box instead of ground truth box will cause a little performance drop. Thus the current face cropping method is robustest. Quantitative results are shown in below table.

  1. Face reconstruction

    The texture of non-visible area is distorted due to self-occlusion, therefore the non-visible face region may appear strange (a little horrible).

Acknowledgement

Thanks for your interest in this repo. If your work or research benefit from this repo, please cite it, star it and popularize it ?

Welcome to focus on my 3D face related works: MeGlass and Face Anti-Spoofing.

Contact

Jianzhu Guo (郭建珠) [Homepage, Google Scholar]: jianzhu.guo@nlpr.ia.ac.cn.

主要指标

概览
名称与所有者cleardusk/3DDFA
主编程语言Python
编程语言Python (语言数: 7)
平台
许可证MIT License
所有者活动
创建于2018-06-29 14:19:21
推送于2022-05-14 12:12:21
最后一次提交2022-05-14 20:12:14
发布数1
最新版本名称v0.1 (发布于 )
第一版名称v0.1 (发布于 )
用户参与
星数3.7k
关注者数117
派生数651
提交数177
已启用问题?
问题数217
打开的问题数64
拉请求数9
打开的拉请求数1
关闭的拉请求数2
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?