poincare-embeddings

PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

  • 所有者: facebookresearch/poincare-embeddings
  • 平台:
  • 许可证: Other
  • 分类:
  • 主题:
  • 喜欢:
    0
      比较:

Github星跟踪图

  • Poincaré Embeddings for Learning Hierarchical Representations

PyTorch implementation of [[https://papers.nips.cc/paper/7213-poincare-embeddings-for-learning-hierarchical-representations][Poincaré Embeddings for Learning Hierarchical Representations]]

** Installation
Simply clone this repository via
#+BEGIN_SRC sh
git clone https://github.com/facebookresearch/poincare-embeddings.git
cd poincare-embeddings
conda env create -f environment.yml
source activate poincare
python setup.py build_ext --inplace
#+END_SRC

** Example: Embedding WordNet Mammals
To embed the transitive closure of the WordNet mammals subtree, first generate the data via
#+BEGIN_SRC sh
cd wordnet
python transitive_closure.py
#+END_SRC
This will generate the transitive closure of the full noun hierarchy as well as of the mammals subtree of WordNet.

To embed the mammals subtree in the reconstruction setting (i.e., without missing data), go to the /root directory/ of the project and run
#+BEGIN_SRC sh
./train-mammals.sh
#+END_SRC
This shell script includes the appropriate parameter settings for the mammals subtree and saves the trained model as =mammals.pth=.

An identical script to learn embeddings of the entire noun hierarchy is located at =train-nouns.sh=. This script contains the hyperparameter setting to reproduce the results for 10-dimensional embeddings of [[https://papers.nips.cc/paper/7213-poincare-embeddings-for-learning-hierarchical-representations][(Nickel & Kiela, 2017)]]. The hyperparameter setting to reproduce the MAP results are provided as comments in the script.

The embeddings are trained via multithreaded async SGD. In the example above, the number of threads is set to a conservative setting (=NHTREADS=2=) which should run well even on smaller machines. On machines with many cores, increase =NTHREADS= for faster convergence.

** Dependencies

  • Python 3 with NumPy
  • PyTorch
  • Scikit-Learn
  • NLTK (to generate the WordNet data)

** References
If you find this code useful for your research, please cite the following paper in your publication:
#+BEGIN_SRC bibtex
@incollection{nickel2017poincare,
title = {Poincar'{e} Embeddings for Learning Hierarchical Representations},
author = {Nickel, Maximilian and Kiela, Douwe},
booktitle = {Advances in Neural Information Processing Systems 30},
editor = {I. Guyon and U. V. Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett},
pages = {6341--6350},
year = {2017},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/7213-poincare-embeddings-for-learning-hierarchical-representations.pdf}
}
#+END_SRC

** License
This code is licensed under [[https://creativecommons.org/licenses/by-nc/4.0/][CC-BY-NC 4.0]].

主要指标

概览
名称与所有者facebookresearch/poincare-embeddings
主编程语言Python
编程语言Python (语言数: 3)
平台
许可证Other
所有者活动
创建于2018-01-19 18:53:04
推送于2025-05-23 17:51:10
最后一次提交
发布数1
最新版本名称1.0 (发布于 )
第一版名称1.0 (发布于 )
用户参与
星数1.7k
关注者数48
派生数236
提交数27
已启用问题?
问题数70
打开的问题数26
拉请求数0
打开的拉请求数5
关闭的拉请求数12
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?