textvae

Theano code for experiments in the paper "A Hybrid Convolutional Variational Autoencoder for Text Generation."

  • 所有者: ssemeniuta/textvae
  • 平台:
  • 許可證:
  • 分類:
  • 主題:
  • 喜歡:
    0
      比較:

Github星跟蹤圖

A Hybrid Convolutional Variational Autoencoder for Text Generation.

Theano code for experiments in the paper A Hybrid Convolutional Variational Autoencoder for Text Generation.

Preparation

First, run makedata.sh. This will download the ptb dataset, split, and preprocess it.

PTB Experiments

Files prefixed with ''lm_'' contain experiments on the ptb dataset. We provide scripts for training of non-VAE, baseline LSTM VAE, and our models and a script to greedily sample from a trained model. ''defs'' subfolder contains definitions of grid searches we have used to generate data for figures and tables in the paper. Running one search is done by:

python -u nn/scripts/grid_search.py -grid defs/gridname.json

To train our model on samples 60 characters long with alpha=0.2 run:

python -u lm_vae_lstm.py -alpha 0.2 -sample_size 60

Twitter Experiments

Code for these experiments is in files starting with ''twitter_''. We do not release the dataset we have used to train our model, but provide both a script to train one and a pretrained model. To use the script on custom data, create a file ''data/tweets.txt'' containing one data sample per line. By default, the first 10k samples will be used for validation and everything else for training, but no more than ~1M samples. In addition, it will only use tweets with up to 128 characters. This is done only for convenience when down- and upsampling. Training on tweets with up to 140 characters will require a little bit of care when handling spatial dimension.

License

MIT

主要指標

概覽
名稱與所有者ssemeniuta/textvae
主編程語言Python
編程語言Python (語言數: 2)
平台
許可證
所有者活动
創建於2017-02-07 22:19:35
推送於2018-10-05 18:54:16
最后一次提交2017-05-29 09:29:54
發布數0
用户参与
星數205
關注者數11
派生數44
提交數5
已啟用問題?
問題數4
打開的問題數2
拉請求數1
打開的拉請求數1
關閉的拉請求數1
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?