PyTorch-NLP

Supporting Rapid Prototyping with a Toolkit (incl. Datasets and Neural Network Layers)

Github星跟踪图

PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch
NLP. torchnlp extends PyTorch to provide you with
basic text data processing functions.

PyPI - Python Version
Codecov
Downloads
Documentation Status
Build Status
Twitter: PetrochukM

Logo by Chloe Yeo, Corporate Sponsorship by WellSaid Labs

Installation ?

Make sure you have Python 3.5+ and PyTorch 1.0+. You can then install pytorch-nlp using
pip:

pip install pytorch-nlp

Or to install the latest code via:

pip install git+https://github.com/PetrochukM/PyTorch-NLP.git

Docs

The complete documentation for PyTorch-NLP is available
via our ReadTheDocs website.

Get Started

Within an NLP data pipeline, you'll want to implement these basic steps:

1. Load your Data ?

Load the IMDB dataset, for example:

from torchnlp.datasets import imdb_dataset

# Load the imdb training dataset
train = imdb_dataset(train=True)
train[0]  # RETURNS: {'text': 'For a movie that gets..', 'sentiment': 'pos'}

Load a custom dataset, for example:

from pathlib import Path

from torchnlp.download import download_file_maybe_extract

directory_path = Path('data/')
train_file_path = Path('trees/train.txt')

download_file_maybe_extract(
    url='http://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip',
    directory=directory_path,
    check_files=[train_file_path])

open(directory_path / train_file_path)

Don't worry we'll handle caching for you!

2. Text to Tensor

Tokenize and encode your text as a tensor.

For example, a WhitespaceEncoder breaks
text into tokens whenever it encounters a whitespace character.

from torchnlp.encoders.text import WhitespaceEncoder

loaded_data = ["now this ain't funny", "so don't you dare laugh"]
encoder = WhitespaceEncoder(loaded_data)
encoded_data = [encoder.encode(example) for example in loaded_data]

3. Tensor to Batch

With your loaded and encoded data in hand, you'll want to batch your dataset.

import torch
from torchnlp.samplers import BucketBatchSampler
from torchnlp.utils import collate_tensors
from torchnlp.encoders.text import stack_and_pad_tensors

encoded_data = [torch.randn(2), torch.randn(3), torch.randn(4), torch.randn(5)]

train_sampler = torch.utils.data.sampler.SequentialSampler(encoded_data)
train_batch_sampler = BucketBatchSampler(
    train_sampler, batch_size=2, drop_last=False, sort_key=lambda i: encoded_data[i].shape[0])

batches = [[encoded_data[i] for i in batch] for batch in train_batch_sampler]
batches = [collate_tensors(batch, stack_tensors=stack_and_pad_tensors) for batch in batches]

PyTorch-NLP builds on top of PyTorch's existing torch.utils.data.sampler, torch.stack
and default_collate to support sequential inputs of varying lengths!

4. Training and Inference

With your batch in hand, you can use PyTorch to develop and train your model using gradient descent.
For example, check out this example code for training on the Stanford
Natural Language Inference (SNLI) Corpus.

Last But Not Least

PyTorch-NLP has a couple more NLP focused utility packages to support you! ?

Deterministic Functions

Now you've setup your pipeline, you may want to ensure that some functions run deterministically.
Wrap any code that's random, with fork_rng and you'll be good to go, like so:

import random
import numpy
import torch

from torchnlp.random import fork_rng

with fork_rng(seed=123):  # Ensure determinism
    print('Random:', random.randint(1, 2**31))
    print('Numpy:', numpy.random.randint(1, 2**31))
    print('Torch:', int(torch.randint(1, 2**31, (1,))))

This will always print:

Random: 224899943
Numpy: 843828735
Torch: 843828736

Pre-Trained Word Vectors

Now that you've computed your vocabulary, you may want to make use of
pre-trained word vectors to set your embeddings, like so:

import torch
from torchnlp.encoders.text import WhitespaceEncoder
from torchnlp.word_to_vector import GloVe

encoder = WhitespaceEncoder(["now this ain't funny", "so don't you dare laugh"])

pretrained_embedding = GloVe(name='6B', dim=100, is_include=lambda w: w in set(encoder.vocab))
embedding_weights = torch.Tensor(encoder.vocab_size, pretrained_embedding.dim)
for i, token in enumerate(encoder.vocab):
    embedding_weights[i] = pretrained_embedding[token]

Neural Networks Layers

For example, from the neural network package, apply the state-of-the-art LockedDropout:

import torch
from torchnlp.nn import LockedDropout

input_ = torch.randn(6, 3, 10)
dropout = LockedDropout(0.5)

# Apply a LockedDropout to `input_`
dropout(input_) # RETURNS: torch.FloatTensor (6x3x10)

Metrics

Compute common NLP metrics such as the BLEU score.

from torchnlp.metrics import get_moses_multi_bleu

hypotheses = ["The brown fox jumps over the dog 笑"]
references = ["The quick brown fox jumps over the lazy dog 笑"]

# Compute BLEU score with the official BLEU perl script
get_moses_multi_bleu(hypotheses, references, lowercase=True)  # RETURNS: 47.9

Help :question:

Maybe looking at longer examples may help you at examples/.

Need more help? We are happy to answer your questions via Gitter Chat

Contributing

We've released PyTorch-NLP because we found a lack of basic toolkits for NLP in PyTorch. We hope
that other organizations can benefit from the project. We are thankful for any contributions from
the community.

Contributing Guide

Read our contributing guide
to learn about our development process, how to propose bugfixes and improvements, and how to build
and test your changes to PyTorch-NLP.

torchtext

torchtext and PyTorch-NLP differ in the architecture and feature set; otherwise, they are similar.
torchtext and PyTorch-NLP provide pre-trained word vectors, datasets, iterators and text encoders.
PyTorch-NLP also provides neural network modules and metrics. From an architecture standpoint,
torchtext is object orientated with external coupling while PyTorch-NLP is object orientated with
low coupling.

AllenNLP

AllenNLP is designed to be a platform for research. PyTorch-NLP is designed to be a lightweight toolkit.

Authors

Citing

If you find PyTorch-NLP useful for an academic publication, then please use the following BibTeX to
cite it:

@misc{pytorch-nlp,
  author = {Petrochuk, Michael},
  title = {PyTorch-NLP: Rapid Prototyping with PyTorch Natural Language Processing (NLP) Tools},
  year = {2018},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/PetrochukM/PyTorch-NLP}},
}

主要指标

概览
名称与所有者PetrochukM/PyTorch-NLP
主编程语言Python
编程语言Python (语言数: 2)
平台
许可证BSD 3-Clause "New" or "Revised" License
所有者活动
创建于2018-02-25 05:00:36
推送于2023-07-04 21:11:26
最后一次提交2023-07-04 14:11:26
发布数5
最新版本名称0.5.0 (发布于 )
第一版名称0.2.0 (发布于 )
用户参与
星数2.2k
关注者数54
派生数255
提交数451
已启用问题?
问题数69
打开的问题数19
拉请求数41
打开的拉请求数5
关闭的拉请求数10
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?