kalman-filter

Kalman Filter implementation in Python using Numpy only in 30 lines.

Github stars Tracking Chart

Implementation of Kalman filter in 30 lines using Numpy. All notations are same as in Kalman Filter Wikipedia Page.

It is a generic implementation of Kalman Filter, should work for any system, provided system dynamics matrices are set up properly. Included example is the prediction of position, velocity and acceleration based on position measurements. Synthetic data is generated for the purpose of illustration.

Running: python kalman-filter.py

import numpy as np

class KalmanFilter(object):
    def __init__(self, F = None, B = None, H = None, Q = None, R = None, P = None, x0 = None):

        if(F is None or H is None):
            raise ValueError("Set proper system dynamics.")

        self.n = F.shape[1]
        self.m = H.shape[1]

        self.F = F
        self.H = H
        self.B = 0 if B is None else B
        self.Q = np.eye(self.n) if Q is None else Q
        self.R = np.eye(self.n) if R is None else R
        self.P = np.eye(self.n) if P is None else P
        self.x = np.zeros((self.n, 1)) if x0 is None else x0

    def predict(self, u = 0):
        self.x = np.dot(self.F, self.x) + np.dot(self.B, u)
        self.P = np.dot(np.dot(self.F, self.P), self.F.T) + self.Q
        return self.x

    def update(self, z):
        y = z - np.dot(self.H, self.x)
        S = self.R + np.dot(self.H, np.dot(self.P, self.H.T))
        K = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S))
        self.x = self.x + np.dot(K, y)
        I = np.eye(self.n)
        self.P = np.dot(np.dot(I - np.dot(K, self.H), self.P), 
        	(I - np.dot(K, self.H)).T) + np.dot(np.dot(K, self.R), K.T)

def example():
	dt = 1.0/60
	F = np.array([[1, dt, 0], [0, 1, dt], [0, 0, 1]])
	H = np.array([1, 0, 0]).reshape(1, 3)
	Q = np.array([[0.05, 0.05, 0.0], [0.05, 0.05, 0.0], [0.0, 0.0, 0.0]])
	R = np.array([0.5]).reshape(1, 1)

	x = np.linspace(-10, 10, 100)
	measurements = - (x**2 + 2*x - 2)  + np.random.normal(0, 2, 100)

	kf = KalmanFilter(F = F, H = H, Q = Q, R = R)
	predictions = []

	for z in measurements:
		predictions.append(np.dot(H,  kf.predict())[0])
		kf.update(z)

	import matplotlib.pyplot as plt
	plt.plot(range(len(measurements)), measurements, label = 'Measurements')
	plt.plot(range(len(predictions)), np.array(predictions), label = 'Kalman Filter Prediction')
	plt.legend()
	plt.show()

if __name__ == '__main__':
    example()

Output

Result

Main metrics

Overview
Name With Ownerzziz/kalman-filter
Primary LanguagePython
Program languagePython (Language Count: 1)
Platform
License:
所有者活动
Created At2018-09-05 12:45:03
Pushed At2022-09-14 03:13:14
Last Commit At2018-09-06 22:52:32
Release Count0
用户参与
Stargazers Count385
Watchers Count8
Fork Count84
Commits Count4
Has Issues Enabled
Issues Count4
Issue Open Count4
Pull Requests Count0
Pull Requests Open Count1
Pull Requests Close Count0
项目设置
Has Wiki Enabled
Is Archived
Is Fork
Is Locked
Is Mirror
Is Private