gota

Gota: DataFrames and data wrangling in Go (Golang)

  • Owner: go-gota/gota
  • Platform:
  • License:: Other
  • Category::
  • Topic:
  • Like:
    0
      Compare:

Github stars Tracking Chart

Gota: DataFrames, Series and Data Wrangling for Go

This is an implementation of DataFrames, Series and data wrangling
methods for the Go programming language. The API is still in flux so
use at your own risk.

DataFrame

The term DataFrame typically refers to a tabular dataset that can be
viewed as a two dimensional table. Often the columns of this dataset
refers to a list of features, while the rows represent a number of
measurements. As the data on the real world is not perfect, DataFrame
supports non measurements or NaN elements.

Common examples of DataFrames can be found on Excel sheets, CSV files
or SQL database tables, but this data can come on a variety of other
formats, like a collection of JSON objects or XML files.

The utility of DataFrames resides on the ability to subset them, merge
them, summarize the data for individual features or apply functions to
entire rows or columns, all while keeping column type integrity.

Usage

Loading data

DataFrames can be constructed passing Series to the dataframe.New constructor
function:

df := dataframe.New(
	series.New([]string{"b", "a"}, series.String, "COL.1"),
	series.New([]int{1, 2}, series.Int, "COL.2"),
	series.New([]float64{3.0, 4.0}, series.Float, "COL.3"),
)

You can also load the data directly from other formats.
The base loading function takes some records in the
form [][]string and returns a new DataFrame from there:

df := dataframe.LoadRecords(
    [][]string{
        []string{"A", "B", "C", "D"},
        []string{"a", "4", "5.1", "true"},
        []string{"k", "5", "7.0", "true"},
        []string{"k", "4", "6.0", "true"},
        []string{"a", "2", "7.1", "false"},
    },
)

Now you can also create DataFrames by loading an slice of arbitrary structs:

type User struct {
	Name     string
	Age      int
	Accuracy float64
    ignored  bool // ignored since unexported
}
users := []User{
	{"Aram", 17, 0.2, true},
	{"Juan", 18, 0.8, true},
	{"Ana", 22, 0.5, true},
}
df := dataframe.LoadStructs(users)

By default, the column types will be auto detected but this can be
configured. For example, if we wish the default type to be Float but
columns A and D are String and Bool respectively:

df := dataframe.LoadRecords(
    [][]string{
        []string{"A", "B", "C", "D"},
        []string{"a", "4", "5.1", "true"},
        []string{"k", "5", "7.0", "true"},
        []string{"k", "4", "6.0", "true"},
        []string{"a", "2", "7.1", "false"},
    },
    dataframe.DetectTypes(false),
    dataframe.DefaultType(series.Float),
    dataframe.WithTypes(map[string]series.Type{
        "A": series.String,
        "D": series.Bool,
    }),
)

Similarly, you can load the data stored on a []map[string]interface{}:

df := dataframe.LoadMaps(
    []map[string]interface{}{
        map[string]interface{}{
            "A": "a",
            "B": 1,
            "C": true,
            "D": 0,
        },
        map[string]interface{}{
            "A": "b",
            "B": 2,
            "C": true,
            "D": 0.5,
        },
    },
)

You can also pass an io.Reader to the functions ReadCSV/ReadJSON
and it will work as expected given that the data is correct:

csvStr := `
Country,Date,Age,Amount,Id
"United States",2012-02-01,50,112.1,01234
"United States",2012-02-01,32,321.31,54320
"United Kingdom",2012-02-01,17,18.2,12345
"United States",2012-02-01,32,321.31,54320
"United Kingdom",2012-02-01,NA,18.2,12345
"United States",2012-02-01,32,321.31,54320
"United States",2012-02-01,32,321.31,54320
Spain,2012-02-01,66,555.42,00241
`
df := dataframe.ReadCSV(strings.NewReader(csvStr))
jsonStr := `[{"COL.2":1,"COL.3":3},{"COL.1":5,"COL.2":2,"COL.3":2},{"COL.1":6,"COL.2":3,"COL.3":1}]`
df := dataframe.ReadJSON(strings.NewReader(jsonStr))

Subsetting

We can subset our DataFrames with the Subset method. For example if we
want the first and third rows we can do the following:

sub := df.Subset([]int{0, 2})

Column selection

If instead of subsetting the rows we want to select specific columns,
by an index or column name:

sel1 := df.Select([]int{0, 2})
sel2 := df.Select([]string{"A", "C"})

Updating values

In order to update the values of a DataFrame we can use the Set
method:

df2 := df.Set(
    []int{0, 2},
    dataframe.LoadRecords(
        [][]string{
            []string{"A", "B", "C", "D"},
            []string{"b", "4", "6.0", "true"},
            []string{"c", "3", "6.0", "false"},
        },
    ),
)

Filtering

For more complex row subsetting we can use the Filter method. For
example, if we want the rows where the column "A" is equal to "a" or
column "B" is greater than 4:

fil := df.Filter(
    dataframe.F{"A", series.Eq, "a"},
    dataframe.F{"B", series.Greater, 4},
) 
fil2 := fil.Filter(
    dataframe.F{"D", series.Eq, true},
)

Filters inside Filter are combined as OR operations whereas if we chain
Filter methods, they will behave as AND.

Arrange

With Arrange a DataFrame can be sorted by the given column names:

sorted := df.Arrange(
    dataframe.Sort("A"),    // Sort in ascending order
    dataframe.RevSort("B"), // Sort in descending order
)

Mutate

If we want to modify a column or add one based on a given Series at
the end we can use the Mutate method:

// Change column C with a new one
mut := df.Mutate(
    series.New([]string{"a", "b", "c", "d"}, series.String, "C"),
)
// Add a new column E
mut2 := df.Mutate(
    series.New([]string{"a", "b", "c", "d"}, series.String, "E"),
)

Joins

Different Join operations are supported (InnerJoin, LeftJoin,
RightJoin, CrossJoin). In order to use these methods you have to
specify which are the keys to be used for joining the DataFrames:

df := dataframe.LoadRecords(
    [][]string{
        []string{"A", "B", "C", "D"},
        []string{"a", "4", "5.1", "true"},
        []string{"k", "5", "7.0", "true"},
        []string{"k", "4", "6.0", "true"},
        []string{"a", "2", "7.1", "false"},
    },
)
df2 := dataframe.LoadRecords(
    [][]string{
        []string{"A", "F", "D"},
        []string{"1", "1", "true"},
        []string{"4", "2", "false"},
        []string{"2", "8", "false"},
        []string{"5", "9", "false"},
    },
)
join := df.InnerJoin(df2, "D")

Function application

Functions can be applied to the rows or columns of a DataFrame,
casting the types as necessary:

mean := func(s series.Series) series.Series {
    floats := s.Float()
    sum := 0.0
    for _, f := range floats {
        sum += f
    }
    return series.Floats(sum / float64(len(floats)))
}
df.Capply(mean)
df.Rapply(mean)

Chaining operations

DataFrames support a number of methods for wrangling the data,
filtering, subsetting, selecting columns, adding new columns or
modifying existing ones. All these methods can be chained one after
another and at the end of the procedure check if there has been any
errors by the DataFrame Err field. If any of the methods in the chain
returns an error, the remaining operations on the chain will become
a no-op.

a = a.Rename("Origin", "Country").
    Filter(dataframe.F{"Age", "<", 50}).
    Filter(dataframe.F{"Origin", "==", "United States"}).
    Select("Id", "Origin", "Date").
    Subset([]int{1, 3})
if a.Err != nil {
    log.Fatal("Oh noes!")
}
fmt.Println(flights)

> [336776x20] DataFrame
> 
>     X0    year  month day   dep_time sched_dep_time dep_delay arr_time ...
>  0: 1     2013  1     1     517      515            2         830      ...
>  1: 2     2013  1     1     533      529            4         850      ...
>  2: 3     2013  1     1     542      540            2         923      ...
>  3: 4     2013  1     1     544      545            -1        1004     ...
>  4: 5     2013  1     1     554      600            -6        812      ...
>  5: 6     2013  1     1     554      558            -4        740      ...
>  6: 7     2013  1     1     555      600            -5        913      ...
>  7: 8     2013  1     1     557      600            -3        709      ...
>  8: 9     2013  1     1     557      600            -3        838      ...
>  9: 10    2013  1     1     558      600            -2        753      ...
>     ...   ...   ...   ...   ...      ...            ...       ...      ...
>     <int> <int> <int> <int> <int>    <int>          <int>     <int>    ...
> 
> Not Showing: sched_arr_time <int>, arr_delay <int>, carrier <string>, flight <int>,
> tailnum <string>, origin <string>, dest <string>, air_time <int>, distance <int>, hour <int>,
> minute <int>, time_hour <string>

Interfacing with gonum

A gonum/mat.Matrix or any object that implements the dataframe.Matrix
interface can be loaded as a DataFrame by using the LoadMatrix() method. If
one wants to convert a DataFrame to a mat.Matrix it is necessary to create
the necessary structs and method implementations. Since a DataFrame already
implements the Dims() (r, c int) method, only implementations for the At and
T methods are necessary:

type matrix struct {
	dataframe.DataFrame
}

func (m matrix) At(i, j int) float64 {
	return m.Elem(i, j).Float()
}

func (m matrix) T() mat.Matrix {
	return mat.Transpose{m}
}

Series

Series are essentially vectors of elements of the same type with
support for missing values. Series are the building blocks for
DataFrame columns.

Four types are currently supported:

Int
Float
String
Bool

For more information about the API, make sure to check:

License

Copyright 2016 Alejandro Sanchez Brotons

Licensed under the Apache License, Version 2.0 (the "License"); you
may not use this file except in compliance with the License. You may
obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing
permissions and limitations under the License.

Main metrics

Overview
Name With Ownergo-gota/gota
Primary LanguageGo
Program languageGo (Language Count: 1)
Platform
License:Other
所有者活动
Created At2016-02-06 17:23:25
Pushed At2023-08-09 06:59:36
Last Commit At2021-10-10 21:10:32
Release Count14
Last Release Namev0.12.0 (Posted on )
First Release Namev0.1.0 (Posted on )
用户参与
Stargazers Count3.2k
Watchers Count84
Fork Count288
Commits Count412
Has Issues Enabled
Issues Count135
Issue Open Count64
Pull Requests Count40
Pull Requests Open Count17
Pull Requests Close Count31
项目设置
Has Wiki Enabled
Is Archived
Is Fork
Is Locked
Is Mirror
Is Private