pytorch_geometric

Geometric Deep Learning Extension Library for PyTorch

Github stars Tracking Chart


PyPI Version
Build Status
Docs Status
Code Coverage
Contributing

Documentation, Paper, External Resources

PyTorch Geometric (PyG) is a geometric deep learning extension library for PyTorch.

It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers.
In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, multi gpu-support, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.


PyTorch Geometric makes implementing Graph Neural Networks a breeze (see here for the accompanying tutorial).
For example, this is all it takes to implement the edge convolutional layer:

import torch
from torch.nn import Sequential as Seq, Linear as Lin, ReLU
from torch_geometric.nn import MessagePassing

class EdgeConv(MessagePassing):
    def __init__(self, F_in, F_out):
        super(EdgeConv, self).__init__(aggr='max')  # "Max" aggregation.
        self.mlp = Seq(Lin(2 * F_in, F_out), ReLU(), Lin(F_out, F_out))

    def forward(self, x, edge_index):
        # x has shape [N, F_in]
        # edge_index has shape [2, E]
        return self.propagate(edge_index, x=x)  # shape [N, F_out]

    def message(self, x_i, x_j):
        # x_i has shape [E, F_in]
        # x_j has shape [E, F_in]
        edge_features = torch.cat([x_i, x_j - x_i], dim=1)  # shape [E, 2 * F_in]
        return self.mlp(edge_features)  # shape [E, F_out]

In detail, the following methods are currently implemented:


Head over to our documentation to find out more about installation, data handling, creation of datasets and a full list of implemented methods, transforms, and datasets.
For a quick start, check out our examples in the examples/ directory.

If you notice anything unexpected, please open an issue and let us know.
If you are missing a specific method, feel free to open a feature request.
We are motivated to constantly make PyTorch Geometric even better.

Installation

We provide pip wheels for all major OS/PyTorch/CUDA combinations, see here., cpu, cu92, cu100, cu101, -------------, -------, --------, ---------, ---------, Linux, ✅, ✅, ✅, ✅, Windows, ✅, ❌, ❌, ✅, macOS, ✅, To install the binaries, first ensure that PyTorch 1.4.0 is installed, e.g.:

$ python -c "import torch; print(torch.__version__)"
>>> 1.4.0

Then run

$ pip install torch-scatter==latest+${CUDA} torch-sparse==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-1.4.0.html
$ pip install torch-cluster (optional)
$ pip install torch-spline-conv (optional)
$ pip install torch-geometric

where ${CUDA} should be replaced by either cpu, cu92, cu100 or cu101 depending on your PyTorch installation.

Running examples

$ cd examples
$ python gcn.py

Cite

Please cite our paper (and the respective papers of the methods used) if you use this code in your own work:

@inproceedings{Fey/Lenssen/2019,
  title={Fast Graph Representation Learning with {PyTorch Geometric}},
  author={Fey, Matthias and Lenssen, Jan E.},
  booktitle={ICLR Workshop on Representation Learning on Graphs and Manifolds},
  year={2019},
}

Feel free to email us if you wish your work to be listed in the external resources.

Running tests

$ python setup.py test

Main metrics

Overview
Name With Ownerpyg-team/pytorch_geometric
Primary LanguagePython
Program languagePython (Language Count: 4)
Platform
License:MIT License
所有者活动
Created At2017-10-06 16:03:03
Pushed At2025-05-20 19:26:27
Last Commit At2025-05-21 01:08:15
Release Count42
Last Release Name2.6.1 (Posted on )
First Release Name0.1.1 (Posted on )
用户参与
Stargazers Count22.4k
Watchers Count254
Fork Count3.8k
Commits Count7.8k
Has Issues Enabled
Issues Count3664
Issue Open Count952
Pull Requests Count2938
Pull Requests Open Count239
Pull Requests Close Count312
项目设置
Has Wiki Enabled
Is Archived
Is Fork
Is Locked
Is Mirror
Is Private