.. raw:: html
.. raw:: html
Back to Home
====================
Japanese NLP Library
.. sectnum::
.. contents::
Requirements
-
Third Party Dependencies
- Cabocha Japanese Morphological parser http://sourceforge.net/projects/cabocha/
-
Python Dependencies
Python 2.6.*
or above
Links
- All code at jProcessing Repo GitHub_
.. _GitHub: https://github.com/kevincobain2000/jProcessing
- Documentation_ and HomePage_ and Sphinx_
.. _Documentation: http://www.jaist.ac.jp/~s1010205/jnlp
.. _HomePage: http://www.jaist.ac.jp/~s1010205/
.. _Sphinx: http://readthedocs.org/docs/jprocessing/en/latest/
- PyPi_ Python Package
.. _PyPi: http://pypi.python.org/pypi/jProcessing/0.1
::
clone git@github.com:kevincobain2000/jProcessing.git
Install
In Terminal
::
bash$ python setup.py install
History
-
0.2
+ Sentiment Analysis of Japanese Text
-
0.1
+ Morphologically Tokenize Japanese Sentence
+ Kanji / Hiragana / Katakana to Romaji Converter
+ Edict Dictionary Search - borrowed
+ Edict Examples Search - incomplete
+ Sentence Similarity between two JP Sentences
+ Run Cabocha(ISO--8859-1 configured) in Python.
+ Longest Common String between Sentences
+ Kanji to Katakana Pronunciation
+ Hiragana, Katakana Chart Parser
Libraries and Modules
Tokenize jTokenize.py
In Python
::
from jNlp.jTokenize import jTokenize
input_sentence = u'私は彼を5日前、つまりこの前の金曜日に駅で見かけた'
list_of_tokens = jTokenize(input_sentence)
print list_of_tokens
print '--'.join(list_of_tokens).encode('utf-8')
Returns:
::
... [u'\u79c1', u'\u306f', u'\u5f7c', u'\u3092', u'\uff15'...]
... 私--は--彼--を--5--日--前--、--つまり--この--前--の--金曜日--に--駅--で--見かけ--た
Katakana Pronunciation:
::
print '--'.join(jReads(input_sentence)).encode('utf-8')
... ワタシ--ハ--カレ--ヲ--ゴ--ニチ--マエ--、--ツマリ--コノ--マエ--ノ--キンヨウビ--ニ--エキ--デ--ミカケ--タ
Cabocha jCabocha.py
Run Cabocha_ with original EUCJP
or IS0-8859-1
configured encoding, with utf8
python
.. _Cabocha: http://code.google.com/p/cabocha/
- If cobocha is configured as
utf8
then see this http://nltk.googlecode.com/svn/trunk/doc/book-jp/ch12.html#cabocha
.. code-block:: python
from jNlp.jCabocha import cabocha
print cabocha(input_sentence).encode('utf-8')
Output:
.. code-block:: xml
Kanji / Katakana /Hiragana to Tokenized Romaji jConvert.py
Uses data/katakanaChart.txt
and parses the chart. See katakanaChart_.
.. code-block:: python
from jNlp.jConvert import *
input_sentence = u'気象庁が21日午前4時48分、発表した天気概況によると、'
print ' '.join(tokenizedRomaji(input_sentence))
print tokenizedRomaji(input_sentence)
.. code-block:: python
...kisyoutyou ga ni ichi nichi gozen yon ji yon hachi hun hapyou si ta tenki gaikyou ni yoru to
...[u'kisyoutyou', u'ga', u'ni', u'ichi', u'nichi', u'gozen',...]
katakanaChart.txt
.. _katakanaChart:
- katakanaChartFile_ and hiraganaChartFile_
.. _katakanaChartFile: https://raw.github.com/kevincobain2000/jProcessing/master/src/jNlp/data/katakanaChart.txt
.. _hiraganaChartFile: https://raw.github.com/kevincobain2000/jProcessing/master/src/jNlp/data/hiraganaChart.txt
Longest Common String Japanese jProcessing.py
On English Strings ::
from jNlp.jProcessing import long_substr
a = 'Once upon a time in Italy'
b = 'Thre was a time in America'
print long_substr(a, b)
Output ::
...a time in
On Japanese Strings ::
a = u'これでアナタも冷え知らず'
b = u'これでア冷え知らずナタも'
print long_substr(a, b).encode('utf-8')
Output ::
...冷え知らず
Similarity between two sentences jProcessing.py
Uses MinHash by checking the overlap http://en.wikipedia.org/wiki/MinHash
:English Strings:
from jNlp.jProcessing import Similarities
s = Similarities()
a = 'There was'
b = 'There is'
print s.minhash(a,b)
...0.444444444444
:Japanese Strings:
from jNlp.jProcessing import *
a = u'これは何ですか?'
b = u'これはわからないです'
print s.minhash(' '.join(jTokenize(a)), ' '.join(jTokenize(b)))
...0.210526315789
Edict Japanese Dictionary Search with Example sentences
Sample Ouput Demo
.. raw:: html
Edict dictionary and example sentences parser.
This package uses the EDICT_ and KANJIDIC_ dictionary files.
These files are the property of the
Electronic Dictionary Research and Development Group_ , and
are used in conformance with the Group's licence_ .
.. _EDICT: http://www.csse.monash.edu.au/~jwb/edict.html
.. _KANJIDIC: http://www.csse.monash.edu.au/~jwb/kanjidic.html
.. _Group: http://www.edrdg.org/
.. _licence: http://www.edrdg.org/edrdg/licence.html
Edict Parser By Paul Goins, see edict_search.py
Edict Example sentences Parse by query, Pulkit Kathuria, see edict_examples.py
Edict examples pickle files are provided but latest example files can be downloaded from the links provided.
Charset
Two files
-
utf8
Charset example file if not usingsrc/jNlp/data/edict_examples
To convert
EUCJP/ISO-8859-1
toutf8
::iconv -f EUCJP -t UTF-8 path/to/edict_examples > path/to/save_with_utf-8
-
ISO-8859-1
edict_dictionary file
Outputs example sentences for a query in Japanese only for ambiguous words.
Links
Latest Dictionary files can be downloaded here_
.. _here: http://www.csse.monash.edu.au/~jwb/edict.html
edict_search.py
:author: Paul Goins License included
linkToOriginal_:
.. _linkToOriginal: http://repo.or.cz/w/jbparse.git/blame/8e42831ca5f721c0320b27d7d83cb553d6e9c68f:/jbparse/edict.py
For all entries of sense definitions
from jNlp.edict_search import *
query = u'認める'
edict_path = 'src/jNlp/data/edict-yy-mm-dd'
kp = Parser(edict_path)
for i, entry in enumerate(kp.search(query)):
... print entry.to_string().encode('utf-8')
edict_examples.py
:Note
: Only outputs the examples sentences for ambiguous words (if word has one or more senses)
:author: Pulkit Kathuria
from jNlp.edict_examples import *
query = u'認める'
edict_path = 'src/jNlp/data/edict-yy-mm-dd'
edict_examples_path = 'src/jNlp/data/edict_examples'
search_with_example(edict_path, edict_examples_path, query)
Output ::
認める
Sense (1) to recognize;
EX:01 我々は彼の才能を認めている。We appreciate his talent.
Sense (2) to observe;
EX:01 x線写真で異状が認められます。We have detected an abnormality on your x-ray.
Sense (3) to admit;
EX:01 母は私の計画をよいと認めた。Mother approved my plan.
EX:02 母は決して私の結婚を認めないだろう。Mother will never approve of my marriage.
EX:03 父は決して私の結婚を認めないだろう。Father will never approve of my marriage.
EX:04 彼は女性の喫煙をいいものだと認めない。He doesn't approve of women smoking.
...
Sentiment Analysis Japanese Text
This section covers (1) Sentiment Analysis on Japanese text using Word Sense Disambiguation, Wordnet-jp_ (Japanese Word Net file name wnjpn-all.tab
), SentiWordnet_ (English SentiWordNet file name SentiWordNet_3.*.txt
).
.. _Wordnet-jp: http://nlpwww.nict.go.jp/wn-ja/eng/downloads.html
.. _SentiWordnet: http://sentiwordnet.isti.cnr.it/
Wordnet files download links
How to Use
The following classifier is baseline, which works as simple mapping of Eng to Japanese using Wordnet and classify on polarity score using SentiWordnet.
- (Adnouns, nouns, verbs, .. all included)
- No WSD module on Japanese Sentence
- Uses word as its common sense for polarity score
from jNlp.jSentiments import *
jp_wn = '../../../../data/wnjpn-all.tab'
en_swn = '../../../../data/SentiWordNet_3.0.0_20100908.txt'
classifier = Sentiment()
classifier.train(en_swn, jp_wn)
text = u'監督、俳優、ストーリー、演出、全部最高!'
print classifier.baseline(text)
...Pos Score = 0.625 Neg Score = 0.125
...Text is Positive
Japanese Word Polarity Score
from jNlp.jSentiments import *
jp_wn = '_dicts/wnjpn-all.tab' #path to Japanese Word Net
en_swn = '_dicts/SentiWordNet_3.0.0_20100908.txt' #Path to SentiWordNet
classifier = Sentiment()
sentiwordnet, jpwordnet = classifier.train(en_swn, jp_wn)
positive_score = sentiwordnet[jpwordnet[u'全部']][0]
negative_score = sentiwordnet[jpwordnet[u'全部']][1]
print 'pos score = {0}, neg score = {1}'.format(positive_score, negative_score)
...pos score = 0.625, neg score = 0.0
Contacts
:Author: pulkit[at]jaist.ac.jp
[change at
with @
]
.. include:: disqus_jnlp.html.rst