skorch

A scikit-learn compatible neural network library that wraps pytorch

Github stars Tracking Chart

.. image:: https://github.com/skorch-dev/skorch/blob/master/assets/skorch.svg
:width: 30%

------------, build, coverage, docs, powered, A scikit-learn compatible neural network library that wraps PyTorch.

.., build, image:: https://api.travis-ci.org/skorch-dev/skorch.svg?branch=master
:alt: Build Status
:scale: 100%
:target: https://travis-ci.org/skorch-dev/skorch?branch=master

.., coverage, image:: https://github.com/skorch-dev/skorch/blob/master/assets/coverage.svg
:alt: Test Coverage
:scale: 100%

.., docs, image:: https://readthedocs.org/projects/skorch/badge/?version=latest
:alt: Documentation Status
:scale: 100%
:target: https://skorch.readthedocs.io/en/latest/?badge=latest

.., powered, image:: https://github.com/skorch-dev/skorch/blob/master/assets/powered.svg
:alt: Powered by
:scale: 100%
:target: https://github.com/ottogroup/

=========
Resources

  • Documentation <https://skorch.readthedocs.io/en/latest/?badge=latest>_
  • Source Code <https://github.com/skorch-dev/skorch/>_

========
Examples

To see more elaborate examples, look here <https://github.com/skorch-dev/skorch/tree/master/notebooks/README.md>__.

.. code:: python

import numpy as np
from sklearn.datasets import make_classification
from torch import nn
import torch.nn.functional as F

from skorch import NeuralNetClassifier


X, y = make_classification(1000, 20, n_informative=10, random_state=0)
X = X.astype(np.float32)
y = y.astype(np.int64)

class MyModule(nn.Module):
    def __init__(self, num_units=10, nonlin=F.relu):
        super(MyModule, self).__init__()

        self.dense0 = nn.Linear(20, num_units)
        self.nonlin = nonlin
        self.dropout = nn.Dropout(0.5)
        self.dense1 = nn.Linear(num_units, 10)
        self.output = nn.Linear(10, 2)

    def forward(self, X, **kwargs):
        X = self.nonlin(self.dense0(X))
        X = self.dropout(X)
        X = F.relu(self.dense1(X))
        X = F.softmax(self.output(X), dim=-1)
        return X


net = NeuralNetClassifier(
    MyModule,
    max_epochs=10,
    lr=0.1,
    # Shuffle training data on each epoch
    iterator_train__shuffle=True,
)

net.fit(X, y)
y_proba = net.predict_proba(X)

In an sklearn Pipeline:

.. code:: python

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler


pipe = Pipeline([
    ('scale', StandardScaler()),
    ('net', net),
])

pipe.fit(X, y)
y_proba = pipe.predict_proba(X)

With grid search

.. code:: python

from sklearn.model_selection import GridSearchCV


params = {
    'lr': [0.01, 0.02],
    'max_epochs': [10, 20],
    'module__num_units': [10, 20],
}
gs = GridSearchCV(net, params, refit=False, cv=3, scoring='accuracy')

gs.fit(X, y)
print(gs.best_score_, gs.best_params_)

skorch also provides many convenient features, among others:

  • Learning rate schedulers <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.LRScheduler>_ (Warm restarts, cyclic LR and many more)
  • Scoring using sklearn (and custom) scoring functions <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.EpochScoring>_
  • Early stopping <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.EarlyStopping>_
  • Checkpointing <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.Checkpoint>_
  • Parameter freezing/unfreezing <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.Freezer>_
  • Progress bar <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.ProgressBar>_ (for CLI as well as jupyter)
  • Automatic inference of CLI parameters <https://github.com/skorch-dev/skorch/tree/master/examples/cli>_

============
Installation

skorch requires Python 3.5 or higher.

pip installation

To install with pip, run:

.. code:: bash

pip install -U skorch

We recommend to use a virtual environment for this.

From source

If you would like to use the must recent additions to skorch or
help development, you should install skorch from source:

.. code:: bash

git clone https://github.com/skorch-dev/skorch.git
cd skorch
# install pytorch version for your system (see below)
python setup.py install

Using conda

You need a working conda installation. Get the correct miniconda for
your system from here <https://conda.io/miniconda.html>__.

You can also install skorch through the conda-forge channel.
The instructions for doing so are
available here <https://github.com/conda-forge/skorch-feedstock>__.
Note: The conda channel is not managed by the skorch maintainers.

If you do not want to use conda-forge, you may install skorch using:

.. code:: bash

git clone https://github.com/skorch-dev/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
python setup.py install

If you want to help developing, run:

.. code:: bash

git clone https://github.com/skorch-dev/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
conda install -c conda-forge --file requirements-dev.txt
python setup.py develop

py.test  # unit tests
pylint skorch  # static code checks

Using pip

If you just want to use skorch, use:

.. code:: bash

git clone https://github.com/skorch-dev/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
python setup.py install

If you want to help developing, run:

.. code:: bash

git clone https://github.com/skorch-dev/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
pip install -r requirements-dev.txt
python setup.py develop

py.test  # unit tests
pylint skorch  # static code checks

PyTorch

PyTorch is not covered by the dependencies, since the PyTorch version
you need is dependent on your system. For installation instructions
for PyTorch, visit the PyTorch website <http://pytorch.org/>__. The
current version of skorch assumes PyTorch >= 1.1.0.

In general, this should work (assuming CUDA 9):

.. code:: bash

# using conda:
conda install pytorch cudatoolkit=9.0 -c pytorch
# using pip
pip install torch

=============
Communication

  • GitHub issues <https://github.com/skorch-dev/skorch/issues>_: bug
    reports, feature requests, install issues, RFCs, thoughts, etc.

  • Slack: We run the #skorch channel on the PyTorch Slack server <https://pytorch.slack.com/>, for which you can request access here <https://bit.ly/ptslack>.

Main metrics

Overview
Name With Ownerskorch-dev/skorch
Primary LanguageJupyter Notebook
Program languagePython (Language Count: 4)
Platform
License:BSD 3-Clause "New" or "Revised" License
所有者活动
Created At2017-07-18 00:13:54
Pushed At2025-06-13 14:10:54
Last Commit At2025-06-13 19:40:54
Release Count19
Last Release Namev1.1.0 (Posted on )
First Release Namev0.1.0 (Posted on )
用户参与
Stargazers Count6.1k
Watchers Count80
Fork Count398
Commits Count1.1k
Has Issues Enabled
Issues Count526
Issue Open Count55
Pull Requests Count495
Pull Requests Open Count8
Pull Requests Close Count59
项目设置
Has Wiki Enabled
Is Archived
Is Fork
Is Locked
Is Mirror
Is Private